


Dynamics 365 for Finance and
Operations Development
Cookbook
Fourth Edition

Build extensive, powerful, and agile business solutions

Deepak Agarwal

Abhimanyu Singh

BIRMINGHAM - MUMBAI



Dynamics 365 for Finance and Operations
Development Cookbook

Fourth Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2009

Second edition: May 2012

Third edition: April 2015

Fourth edition: August 2017

Production reference: 1100817

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-886-4

www.packtpub.com

http://www.packtpub.com


Credits

Authors
Deepak Agarwal
Abhimanyu Singh

Copy Editor
Safis Editing

Reviewer
Santosh Paruvella

Project Coordinator
Prajakta Naik

Commissioning Editor
Aaron Lazer

Proofreader
Safis Editing

Acquisition Editor
Denim Pinto

Indexer
Francy Puthiry

Content Development Editor
Lawrence Veigas

Graphics
Abhinash Sahu

Technical Editor
Mehul Singh

Production Coordinator
Nilesh Mohite



About the Authors
Deepak Agarwal is a Microsoft Certified Professional who has more than 6 years of
relevant experience. He has worked with different versions of Axapta, such as AX 2009, AX
2012, and Dynamics 365. He has had a wide range of development, consulting, and leading
roles, while always maintaining a significant role as a business application developer.
Although his strengths are rooted in X++ development, he is a highly regarded developer
and expert in the technical aspects of Dynamics AX development and customization. He
has also worked on base product development with the Microsoft team.

He was awarded the Most Valuable Professional (MVP) award from Microsoft for
Dynamics AX four times in a row, and he has held this title since 2013.

He shares his experience with Dynamics AX on his blog Axapta V/s Me.

Deepak has also worked on the following Packt books:

Microsoft Dynamics AX 2012 R3 Reporting Cookbook1.
Dynamics AX 2012 Reporting Cookbook2.
Microsoft Dynamics AX 2012 Programming: Getting Started3.

I would like to thank my wife for her support during this duration. Big thanks for her
understanding while I spent late hours working on this book. Thanks to my co-author,
Abhimanyu, and the Packt team for their support and efforts.



Abhimanyu Singh works as a Microsoft Dynamics 365 for Finance and Operations
consultant. Since the start of his career in 2012, he has worked in the development and
designing of business solutions for customers in supply chain management, banking, and
finance domain using Microsoft technologies. He has several certifications, including the
Microsoft Certified Dynamics Specialist certification.

I would like to thank my parents, sister, and brother-in-law for their support and
inspiration during the time spent on this book. Secondly, I wish to thank the co-author of
this book, and my friend, Deepak Agarwal--a very experienced Dynamics AX consultant.



About the Reviewer
Santosh Paruvella has 12 years of experience in Dynamics AX, and he has worked on
various versions of it, from 3.0 to 2012, and Dynamics 365 for Finance and Operations. He is
presently working as a Technical Architect and Lead for various implementation projects,
designing the solutions and leading the team towards successful implementations.

I have got the chance to review this Dynamics 365 for finance and Operations
Development Cookbook, and I am very thankful to the Packt team and the author for this
opportunity. This is a very good book for beginners to start with AX development.



www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.comand as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt


Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon.com/dp/1786468867.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1786468867


This book is dedicated to my grandpa, the late Mr. M.R. Agarwal. You are always a blessing
indeed.

- Deepak Agarwal



Table of Contents
Preface 1

Chapter 1: Processing Data 8

Introduction 8
Creating a new project, package, and model 9

How to do it... 9
There's more... 13

Creating a new number sequence 14
How to do it... 15
How it works... 21
See also 21

Renaming the primary key 22
How to do it... 25
How it works... 28

Adding a document handling note 28
Getting ready 29
How to do it... 30
How it works... 32

Using a normal table as a temporary table 32
How to do it... 33
How it works... 34

Copying a record 34
How to do it... 35
How it works... 37
There's more... 38

Building a query object 39
How to do it... 40
How it works... 41
There's more... 42

Using the OR operator 43
See also 44

Using a macro in a SQL statement 44
How to do it... 45
How it works... 46

Executing a direct SQL statement 47



[ ]

How to do it... 47
How it works... 50
There's more... 51

Enhancing the data consistency checks 53
Getting ready 53
How to do it... 55
How it works... 57
There's more... 58

Using the date effectiveness feature 58
How to do it... 59
How it works... 62

Chapter 2: Working with Forms 63

Introduction 63
Creating dialogs using the RunBase framework 64

How to do it... 65
How it works... 69

Handling the dialog event 70
How to do it... 71
How it works... 75
See also 76

Creating dialogs using the SysOperation framework 76
Getting ready 77
How to do it... 78

Building a dynamic form 86
How to do it... 87
How it works... 91

Adding a form splitter 93
How to do it... 94
How it works... 95

Creating a modal form 96
How to do it... 96
How it works... 98
There's more... 98
See also 98

Modifying multiple forms dynamically 98
How to do it... 99
How it works... 101

Storing the last form values 101
How to do it... 102



[ ]

How it works... 104
Using a tree control 105

How to do it... 106
How it works... 111
See also 112

Adding the View details link 112
How to do it... 113
How it works... 115

Selecting a form pattern 116
How to do it 116

Full list of form patterns 117
How to do it... 118

Creating a new form 121
Getting ready 121
How to do it... 121
How it works... 126

Chapter 3: Working with Data in Forms 127

Introduction 127
Using a number sequence handler 128

How to do it... 128
How it works... 131
See also 132

Creating a custom filter control 132
How to do it... 133
How it works... 137
See also 138

Creating a custom instant search filter 138
How to do it... 138
How it works... 140
See also 141

Building a selected/available list 141
How to do it... 142
How it works... 146
There's more... 147

Creating a wizard 151
How to do it... 152
How it works... 162

Processing multiple records 164
How to do it... 164



[ ]

How it works... 167
Coloring records 168

Getting ready 168
How to do it... 168
How it works... 169
See also 170

Adding an image to records 170
How to do it... 171
How it works... 172
There's more... 172

Displaying an image as part of a form 173
Saving a stored image as a file 175

Chapter 4: Building Lookups 179

Introduction 179
Creating an automatic lookup 180

How to do it... 180
How it works... 181
There's more... 181

Creating a lookup dynamically 183
How to do it... 184
How it works... 186
There's more... 187

Using a form to build a lookup 187
How to do it... 187
How it works... 191
See also 193

Building a tree lookup 193
How to do it... 193
How it works... 196
See also 197

Displaying a list of custom options 197
How to do it... 198
How it works... 200
There's more... 200

Displaying custom options in another way 200
How to do it... 201
How it works... 204
There's more... 204

Building a lookup based on the record description 207



[ ]

How to do it... 207
How it works... 209
There's more... 210

Building the browse for folder lookup 213
How to do it... 214
How it works... 218
There's more... 218

Creating a color picker lookup 219
How to do it... 220
How it works... 222

Chapter 5: Processing Business Tasks 223

Introduction 223
Using a segmented entry control 224

How to do it... 224
How it works... 227
There's more... 227
See also 229

Creating a general journal 230
How to do it... 230
How it works... 235
There's more 235
See also 238

Posting a general journal 238
How to do it... 238
How it works... 240
See also 240

Processing a project journal 241
How to do it... 241
How it works... 243
There's more... 244

Creating and posting a ledger voucher 245
How to do it... 245
How it works... 248
See also 250

Changing an automatic transaction text 250
Getting ready 251
How to do it... 251
How it works... 253
There's more... 253



[ ]

Creating a purchase order 254
How to do it... 255
How it works... 256
There's more... 257

Posting a purchase order 257
How to do it... 257
How it works... 259
There's more... 260

Creating a sales order 261
How to do it... 261
How it works... 262
There's more... 263

Posting a sales order 263
How to do it... 264
How it works... 265
There's more... 265

Creating an electronic payment format 266
How to do it... 266
How it works... 271

Chapter 6: Data Management 273

Introduction 273
Data entities 274

Getting ready 274
How to do it... 275
How it works... 280
There's more... 281

Building a data entity with multiple data sources 283
How to do it... 283
How it works... 289
There's more... 290

Data packages 292
Getting ready... 292
How to do it... 294
There's more... 299
See also 302

Data migration 302
Getting ready 303
How to do it... 305
How it works... 308



[ ]

Importing data 308
How to do it... 308
How it works... 314

Troubleshooting 314
Getting ready 314
How to do it... 315
How it works... 322
There's more... 326

Chapter 7: Integration with Microsoft Office 327

Introduction 327
Configuring and using the Excel Data Connector add-in 328

How to do it... 328
How it works... 332

Using Workbook Designer 333
How to do it... 333
How it works... 336

Export API 336
How to do it... 337
How it works... 339

Lookup in Excel - creating a custom lookup 340
How to do it... 340
How it works... 341

Document management 342
How to do it... 342
How it works... 344
There's more... 344

Chapter 8: Integration with Power BI 346

Introduction 346
Configuring Power BI 347

How to do it... 347
How it works... 354
There's more... 355
See also 355

Consuming data in Excel 356
How to do it... 356
How it works... 361
See also 362

Integrating Excel with Power BI 363



[ ]

How to do it... 363
How it works... 366
See also 366

Developing interactive dashboards 366
How to do it... 367
How it works... 374

Embedding Power BI visuals 374
How to do it... 374
How it works... 376

Chapter 9: Integration with Services 377

Introduction 377
Authenticating a native client app 378

Getting ready 378
How to do it... 378
How it works... 386
There's more... 387
See also 387

Creating a custom service 388
Getting ready 388
How to do it... 388
How it works... 392

Consuming custom services in JSON 392
Getting ready 393
How to do it... 393
How it works... 396
There's more... 396

Consuming custom services in SOAP 397
Getting ready 397
How to do it... 398
How it works... 400

Consuming OData services 401
Getting ready 401
How to do it... 402
How it works... 405
There's more... 406
See also 406

Consuming external web services 406
Getting ready 406
How to do it... 406



[ ]

How it works... 412
There's more... 413
See also 414

Chapter 10: Improving Development Efficiency and Performance 415

Introduction 415
Using extensions 416

How to do it... 416
How it works... 419

Caching a display method 420
How to do it... 420
How it works... 422
There's more... 423

Calculating code execution time 424
How to do it... 424
How it works... 425
There's more... 426

Enhancing insert, update, and delete operations 427
How to do it... 427
How it works... 434
There's more... 435

Using delete_from 435
Using update_recordSet for faster updates 436

Writing efficient SQL statements 437
How to do it... 437
How it works... 439
There's more... 440
See also 441

Using event handler 441
How to do it... 442
How it works... 444
There's more... 444

Creating a Delegate method 445
Getting ready... 445
How to do it... 445
How it works... 447
There's more... 447
See also 447

Index 448



Preface
As a Dynamics 365 for Finance and Operations developer, your responsibility is to deliver
all kinds of application customization, whether small adjustments or a bespoke modules.
Dynamics 365 for Finance and Operations is a highly customizable system and requires a
significant amount of knowledge and experience to deliver quality solutions. One goal can
be achieved in multiple ways, and there is always the question of which way is the best.

This book takes you through numerous recipes to help you with daily development tasks.

Each recipe contains detailed step-by-step instructions along with the application
screenshots and in-depth explanations. The recipes cover multiple Dynamics 365 for
Financial and Operations modules, so, at the same time, the book provides an overview of
the functional aspects of the system for developers.

What this book covers
Chapter 1, Processing Data, focuses on data manipulation. It explains how to build data
queries, check and modify existing data, read and write external files, and use data
effectively.

Chapter 2, Working with Forms, covers various aspects of building forms in Dynamics 365
for Finance and Operations. In this chapter, dialogs and their events are explained. Also,
various useful features, such as splitters, tree controls, and checklists, are explained.

Chapter 3, Working with Data in Forms, basically supplements Chapter 2, Working with
Forms, and explains the data organization in forms. The examples in this chapter include
instructions for building filter controls on forms, processing multiple records, and working
with images and colors.

Chapter 4, Building Lookups, covers all kinds of lookups in the system. This chapter starts
with a simple, automatically generated lookup, continues with more advanced ones, and
finishes with standard Windows lookups, such as the file selection dialog and the color
picker.

Chapter 5, Processing Business Tasks, explains how to use the Dynamics 365 for Finance and
Operations business logic API. In this chapter, topics such as how to process journals,
purchase orders, and sales orders are discussed. Other features, such as posting ledger
vouchers, modifying transaction texts, and creating electronic payment formats, are
included as well.



Preface

[ 2 ]

Chapter 6, Data Management, explains the data management and data entity concepts, how
to build a data entity, data packages, and import and export in Dynamics 365 for Financial
and Operations.

Chapter 7, Integration with Microsoft Office, explains how to configure and use the Excel
Data Connector add-in, and design Excel workbooks with the data feed from Dynamics 365
from Operations using OData. It also covers how to use the export API and document
management.

Chapter 8, Integration with Power BI, explains the configuration of Power BI and its
integration with Dynamics 365 for Financial and Operations to develop interactive
dashboards and embed them in Dynamics 365 for Financial and Operations workspaces.

Chapter 9, Integration with Services, explains how to use services in Dynamics 365 for
Financial and Operations. This chapter covers how to create services, authentication, SOAP
applications, JSON applications, and OData services. It also demonstrates how to consume
external services.

Chapter 10, Improving Development Efficiency and Performance, presents a few ideas on how
to make daily development tasks easier. It discusses how system performance can be
improved by following several simple rules. This chapter explains how to calculate code
execution time, how to write efficient SQL statements, and how to properly cache display
methods.

Exceptions and considerations
The code in this book follows the best practice guidelines provided by Microsoft, but there
are some exceptions:

No text labels were used to make the code clear
No three-letter code was used in front of each new AOT object
No configuration or security keys were used
Object properties that are not relevant to the topic being discussed are not set

Also, here are some considerations that you need to keep in mind when reading this book:

Each recipe only demonstrates the principle and is not a complete solution
The data in your environment might not match the data used in the recipes, so
the code might have to be adjusted appropriately
For each recipe, the assumption is that no other modifications are present in the
system, unless it is explicitly specified



Preface

[ 3 ]

The code might not have all the possible validations that are not relevant to the
principle being explained
The code might have more variables than required in order to ensure that it is
clear for all audiences
Sometimes, unnecessary code wrapping is used to make sure the code fits into
the page width of this book and is easily readable

What you need for this book
All the coding examples were performed in a Microsoft Azure-hosted Microsoft Dynamics
365 for Financial and Operations environment. The following list of software from the
virtual image was used in this book:

Microsoft Dynamics 365 for Financial and Operations (Update 6)
Microsoft Visual studio 2015
Microsoft Windows Server 2015 Enterprise
Microsoft SQL Server 2016
Microsoft Power BI
Microsoft Office Excel 2015
Microsoft Office Word 2015
Microsoft Internet Explorer
Windows Notepad

Although all the recipes have been tested on the previously-mentioned software, they may
work on older or newer software versions with minor code adjustments. As Microsoft is
continuously evolving on Dynamics 365 for Financial and Operations, we might see some
differences while using the same code in older or newer updates of application. Stick to the
concept and customize or extend the application.

Who this book is for
If you are a Dynamics AX developer primarily focused on delivering time-proven
applications, then this book is for you. This book is also ideal for people who want to raise
their programming skills above the beginner level, and, at the same time, learn the
functional aspects of Dynamics 365 for Financial and Operations. Some X++ coding
experience is expected.



Preface

[ 4 ]

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...
This section contains the steps required to follow the recipe.

How it works...
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Then, to
override the data source's write() method."



Preface

[ 5 ]

A block of code is set as follows:

  [FormDataSourceEventHandler(formDataSourceStr(CustGroup,
   CustGroup), FormDataSourceEventType::Written)]
  public void CustGroup_OnWritten(FormDataSource sender,
  FormDataSourceEventArgs e)
 {
   this.numberSeqFormHandler().formMethodDataSourceWrite();
 }

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking the Next button
moves you to the next screen."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

http://www.packtpub.com/authors


Preface

[ 6 ]

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Dynamics-365-for-Finance-and-Operations-Development-

Cookbook-Fourth-Edition. We also have other code bundles from our rich catalog of
books and videos available at https://github.com/PacktPublishing/. Check them
out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Dynamics-365-for-Finance-and-Operations-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Dynamics-365-for-Finance-and-Operations-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/Dynamics-365-for-Finance-and-Operations-Development-Cookbook-Fourth-Edition
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata


Preface

[ 7 ]

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of the book in the
search field. The required information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support


1
Processing Data

In this chapter, we will cover the following recipes:

Creating a new project, package, and model
Creating a new number sequence
Renaming the primary key
Adding a document handling note
Using a normal table as a temporary table
Copying a record
Building a query object
Using a macro in a SQL statement
Executing a direct SQL statement
Enhancing the data consistency checks
Using the date effectiveness feature

Introduction
This chapter focuses on data manipulation exercises in all new Dynamics 365 for Finance
and Operations. These exercises are very useful when doing data migration, system
integration, custom reporting, and so on. Here, we will discuss how to work with query
objects from the X++/C# code. We will also discuss how to reuse macros in X++ SQL
statements and how to execute SQL statements directly to the database. This chapter will
explain how to rename primary keys, how to merge and copy records, how to add
document handling notes to selected records, and how to create and read XML and comma-
separated files. The chapter ends with a recipe about the date effectiveness feature.



Processing Data

[ 9 ]

Creating a new project, package, and model
Elements in Dynamics 365 for Finance and Operations represent every individual element
of AOT such as class, table, form, and so on. Elements in Dynamics 365 for Finance and
Operations are stored on disk as XML files; these files contain the metadata and source code
for the element. The XML files are the unit of Source Control.

Projects works the same as AX2012, but in D365 an element can be customized only once
they are added to a specific Visual Studio project. The project may only belong to one
model.

A Dynamics 365 for Finance and Operations model is a group of elements. Standard
elements are part of a standard model; you can add them into your model and do
customization. A model is a design-time concept. An example of models: warehouse
management model, a project accounting model, and more. Models can have one or more
projects. Models may only belong to one package.

A Dynamics 365 for Finance and Operations package is a deployment and compilation
unit of one or more models. It includes model metadata, binaries, cubes, and other
associated resources. One or more D365 packages can be packaged into a deployment
package, which is the vehicle used for deployment on UAT and production environments.
Packages are packaged into a deployable package file for deployment to Sandbox or
production environments. A package can have one or more models. Packages can have
references to other packages, just like .NET assemblies can reference each other.

How to do it...
To create a new project, follow these steps:

Open Visual Studio as admin.1.
On the File menu, point to New, and then click Project.2.
In the list of template types, expand the Installed node.3.
Expand the Templates node.4.
Select the Microsoft Dynamics 365 for Operations category.5.
Select the D365 Project template.6.
Enter the name and location for the new project.7.



Processing Data

[ 10 ]

Select Create directory for solution if you want to create a new solution for this8.
project, uncheck if you want to add in your current solution.

To create a new model, follow these steps:

Open Visual Studio as admin.1.
On the Dynamics 365 menu, point to Model management and select Create2.
model.



Processing Data

[ 11 ]

Give a model, publisher name, and other values:3.



Processing Data

[ 12 ]

Now here you can create a new package or select any existing package. We could4.
create a new package and select the required package as referenced packages:



Processing Data

[ 13 ]

Double-check the summary with details. Select Create new project if you want to5.
create a new project in this model once created. You can mark this model to all
your new projects by selecting options:

There's more...
As you saw, there was one more step while creating a model, Select referenced packages.
When you create your own package you can select from an existing package to add them as
references in your new package. You may need to add some standard package reference if
you want to add them into your customization.



Processing Data

[ 14 ]

Here are the steps to create a new package:

Open Visual Studio as admin.1.
On the Dynamics 365 menu, point to Model management and select Create2.
model.
Give a model, publisher name, and other values.3.
On the next step select Create new package4.
Give a name to your package.5.
Next select the existing package as a reference to this new package.6.
Click on Finish.7.

So now you have your own model with a new package.

Creating a new number sequence
Number sequences in Dynamics 365 for Finance and Operations are used to generate
specifically formatted numbers for record identification. These number sequences can be
anything from voucher numbers or transaction identification numbers to customer or
vendor accounts.

When developing custom functionality, often one of the tasks is to add a new number
sequence to the system in order to support newly created tables. Adding a number
sequence to the system is a two-step process. First, we create the number sequence itself;
second, we start using it in some particular form or from the code.

D365 contains a list of NumberSeqApplicationModule derivative classes, which hold the
number sequence's setup data for the specific module. These classes are read by the number
sequence wizard, which detects existing number sequences and proposes to create the
missing ones or newly added ones. The wizard is normally run as a part of the application
initialization. It can also be rerun any time later when expanding the D365 functionality
used, where a setup of additional number sequences is required. The wizard also has to be
rerun if new custom number sequences are added to the system.



Processing Data

[ 15 ]

In this recipe, we will do the first step, that is, add a new number sequence to the system. In
a standard application, the customer group number is not driven by any number sequence,
so we will enhance this by creating it. The second step is explained later in the Using a
number sequence handler recipe in Chapter 3, Working with Data in Forms.

How to do it...
Carry out the following steps in order to complete this recipe:

Create a new NumberSeqModuleCustomer_packt class in the D365 Project that1.
extends the NumberSeqModuleCustomer class in the Application and add the
following code snippet at the bottom of the loadModule_Extension() method:

        class NumberSeqModuleCustomer_packt extends
         NumberSeqModuleCustomer
       {
         public void loadModule_Extension()
        {
          NumberSeqDatatype datatype = NumberSeqDatatype::construct();

          datatype.parmDatatypeId(extendedTypeNum(CustGroupId));
          datatype.parmReferenceHelp("Customer group ID");
          datatype.parmWizardIsContinuous(false);
          datatype.parmWizardIsManual(NoYes::No);
          datatype.parmWizardIsChangeDownAllowed(NoYes::Yes);
          datatype.parmWizardIsChangeUpAllowed(NoYes::Yes);
          datatype.parmWizardHighest(999);
          datatype.parmSortField(20);
          datatype.addParameterType(
          NumberSeqParameterType::DataArea, true, false);

          this.create(datatype);
        }
       }

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed
directly to you.

http://www.packtpub.com
http://www.packtpub.com/support


Processing Data

[ 16 ]

Create a new runnable class (Job) with the following lines of code, build the2.
solution and run it:

         class loadNumSeqCustPackt
        {
          /// <summary>
          /// Runs the class with the specified arguments.
          /// </summary>
          /// <param name = "_args">The specified arguments.</param>
           public static void Main(Args args)
          {
            //define the class variable
            NumberSeqModuleCustomer_packt nymberSeqMod = new
             NumberSeqModuleCustomer_packt();

            //load the number sequences
             nymberSeqMod.loadModule_Extension();
          }

        }

Run the number sequence wizard by clicking on the Generate button under3.
Number sequence by going to Organization administration | Common |
Number sequence and then click on the Next button, as shown in the following
screenshot:



Processing Data

[ 17 ]

Click on Details to view more information. Delete everything apart from the4.
rows where Area is Accounts receivable and Reference is Customer group. Note
the number sequence codes and click on the Next button, as shown here:

On the last page, click on the Finish button to complete the setup, as shown in the5.
following screenshot:



Processing Data

[ 18 ]

The newly created number sequences now can be found in the Number sequence6.
form, as shown in the following screenshot:



Processing Data

[ 19 ]

Navigate to Organization administration | Number sequences | Segment7.
configuration and notice the new Customer group reference under the Accounts
receivable area:

Navigate to Accounts receivable | Setup | Accounts receivable parameters and8.
select the Number sequences tab. Here, you should see the new number
sequence code:



Processing Data

[ 20 ]

The last thing to be done is to create a helper method for this number sequence.9.
Create a new extension class CustParameters_Extension for the
CustParameters table and add it to the Dynamics 365 Project and then create
the following method and build the solution:

        [ExtensionOf(tableStr(CustParameters))]
        final  class CustParameters_Extension
        {
          /// <summary>
          /// Gets the number reference customer group id.
          /// </summary>
          /// <returns>
          /// An instance of the <c>NumberSequenceReference</c> class.
          /// </returns>
          client server static NumberSequenceReference
           numRefCustGroupId()
          {
            NumberSequenceReference NumberSeqReference;
            NumberSeqReference = NumberSeqReference::findReference
            (extendedTypeNum(CustGroupId));
             return NumberSeqReference;
          }
        }



Processing Data

[ 21 ]

How it works...
We start the recipe by adding a number sequence initialization code into the
NumberSeqModuleCustomer_packt class. As understood from its name, the number
sequence initialization code holds the initialization of the number sequences that belong to
the Accounts receivable module.

The code in the loadModule_Extension() method defines the default number sequence
settings to be used in the wizard, such as the data type, description, and highest possible
number. Additional options such as the starting sequence number, number format, and
others can also be added here. All the mentioned options can be changed while running the
wizard. The addParameterType() method is used to define the number sequence scope.
In the example, we created a separate sequence for each Legal entity.

Before we start the wizard, we initialize number sequence references. This should be done
as a part of the Dynamics 365 for Finance and Operations initialization checklist, but in this
example, we execute it manually by calling the loadModule_Extension() method of the
NumberSeqApplicationModule_packt class.

Next, we execute the wizard that will create the number sequences for us. We skip the
welcome page and in the second step of the wizard, the Details button can be used to
display more options. The options can also be changed later in the Number sequences form
before or even after the number sequence is actually used. The last page shows an overview
of what will be created. Once completed, the wizard creates new records in the Number
sequences form for each company.

The newly created number sequence reference appears in the Segment configuration form.
Here, we can see that the Data area checkbox is checked, which means that we will have
separate number lists for each company. The number sequence setup can be normally
located in the module parameter forms.

See also
The Using a number sequence handler recipe in Chapter 3, Working with Data in
Forms



Processing Data

[ 22 ]

Renaming the primary key
Most of you who are familiar with the Dynamics 365 for Finance and Operations
application, have probably used the standard Rename function. This function allows you to
rename the primary key of almost any record. With this function, you can fix records that
were saved or created by mistake. This function ensures data consistency, that is, all the
related records are renamed as well. It can be accessed from the Record information form
(shown in the following screenshot), which can be opened by selecting Record info from
the right-click menu on any record:



Processing Data

[ 23 ]

A new form will open as follows:



Processing Data

[ 24 ]

Click on the Rename button to rename the Vendor Account field value.

When it comes to mass renaming, this function might be very time-consuming as you need
to run it on every record. An alternative way of doing this is to create a job that
automatically runs through all the required records and calls this function automatically.



Processing Data

[ 25 ]

This recipe will explain how the record's primary key can be renamed through the code. As
an example, we will create a job that renames a vendor account.

How to do it...
Carry out the following steps in order to complete this recipe:

Navigate to Accounts payable | Vendors | All vendors and find the account that1.
has to be renamed, as shown in the following screenshot:

Click on Transactions in the Action pane to check the existing transactions, as2.
shown in the following screenshot:



Processing Data

[ 26 ]

Create a new project, create a runnable class named VendAccountRename, and3.
enter the following code snippet. Use the previously selected account:

        class VendAccountRename
       {
         /// <summary>
         /// Runs the class with the specified arguments.
         /// </summary>
         /// <param name = "_args">The specified arguments.</param>
         public static void main(Args _args)
        {
          VendTable vendTable;

          ttsBegin;

          select firstOnly vendTable
          where vendTable.AccountNum == '1002';

          if (vendTable)
         {
           vendTable.AccountNum = 'US-1002';
           vendTable.renamePrimaryKey();
         }

          ttsCommit;
        }

       }



Processing Data

[ 27 ]

Select class VendAccountRename and right-click and then select Set as startup4.
object. Execute the class by clicking Start in Visual Studio and check whether the
renaming was successful, by navigating to Accounts payable | Vendors | All
vendors again and finding the new account. The new account should have
retained all its transactions and other related records, as shown in the following
screenshot:

Click on Transactions in the Action pane in order to see whether the existing5.
transactions are still in place, as shown in the following screenshot:



Processing Data

[ 28 ]

How it works...
In this recipe, we first select the desired vendor record and set its account number to the
new value. Note that only the fields belonging to the table's primary key can be renamed in
this way.

Then, we call the table's renamePrimaryKey() method, which does the actual renaming.
The method finds all the related records for the selected vendor account and updates them
with the new value. The operation might take a while, depending on the volume of data, as
the system has to update multiple records located in multiple tables.

Adding a document handling note
Document handling in Dynamics 365 for Finance and Operations is a feature that allows
you to add notes, links, documents, images, files, and other related information to almost
any record in the system. For example, we can track all the correspondence sent out to our
customers by attaching the documents to their records in Dynamics 365 for Finance and
Operations. Document handling on most of the forms can be accessed either from the
Action pane by clicking on the Attachments button and selecting Document handling from
the Command menu under File or selecting the Document handling icon from the status
bar.



Processing Data

[ 29 ]

Document handling has a number of configuration parameters that you can find by
navigating to Organization administration | Setup | Document management. Please refer
to Dynamics 365 for Operations Manuals to find out more.

Dynamics 365 for Finance and Operations also allows you to add document handling notes
from the code. This can come in handy when you need to automate the document handling
process. In this recipe, we will demonstrate this by adding a note to a vendor account.

Getting ready
Before you start, ensure that document handling is enabled on the user interface. Open
Document management parameters by navigating to Organization administration | Setup
| Document management and make sure that Use Active document tables is not marked,
as shown in the following screenshot:

Then, open the Document types form from the same location and pick or create a new
document type with its Group set to Note, as shown in the following screenshot. In our
demonstration, we will use Note.



Processing Data

[ 30 ]

How to do it...
Carry out the following steps in order to complete this recipe:

Navigate to Accounts payable | Vendors | All vendors and locate any vendor1.
account to be updated, as shown in the following screenshot:



Processing Data

[ 31 ]

Create a Dynamics 365 for Operations Project, create a new runnable class named2.
VendAccountDocument, and enter the following code snippet. Use the
previously selected vendor account and document type:

        class VendAccountDocument
       {
         static void main(Args _args)
        {
          VendTable vendTable;
          DocuType  docuType;
          DocuRef   docuRef;

          vendTable = VendTable::find('1005');
          docuType  = DocuType::find('Note');

          if (!docuType ||
           docuType.TypeGroup != DocuTypeGroup::Note)
         {
           throw error("Invalid document type");
         }

          docuRef.RefCompanyId = vendTable.dataAreaId;
          docuRef.RefTableId   = vendTable.TableId;
          docuRef.RefRecId     = vendTable.RecId;
          docuRef.TypeId       = docuType.TypeId;
          docuRef.Name         = 'Automatic note';
          docuRef.Notes        = 'Added from X++';
          docuRef.insert();

          info("Document note has been added successfully");
        }

       }

Run the class to create the note.3.
Go back to the vendor list and click on the Attachments button in the form's4.
Action pane or select Document handling from the Command menu under File
to view the note added by our code, as shown in the following screenshot:



Processing Data

[ 32 ]

How it works...
All the document handling notes are stored in the DocuRef table, where three fields,
RefCompanyId, RefTableId, and RefRecId, are used to identify the parent record. In this
recipe, we set these fields to the vendor company ID, vendor table ID, and vendor account
record ID, respectively. Then, we set the type, name, and description and inserted the
document handling record. Notice that we have validated the document type before using
it. In this way, we added a note to the record.

Using a normal table as a temporary table
Standard Dynamics 365 for Finance and Operations contains numerous temporary tables
that are used by the application and can be used in custom modifications too. Although
new temporary tables can also be easily created using the Dynamics 365 for Operations
Project, sometimes it is not effective. One of the cases where it is not effective can be when
the temporary table is similar to an existing one or exactly the same. The goal of this recipe
is to demonstrate an approach for using standard non temporary tables in order to hold
temporary data.

As an example, we will use the vendor table to insert and display a couple of temporary
records without affecting the actual data.



Processing Data

[ 33 ]

How to do it...
Carry out the following steps in order to complete this recipe:

In the Dynamics 365 Project, create a new class named VendTableTmp with the1.
following code snippet:

        class VendTableTemp
       {
         public static void main(Args _args)
        {
          VendTable   vendTable;

          vendTable.setTmp();

          vendTable.AccountNum = '1000';
          vendTable.Blocked    = CustVendorBlocked::No;
          vendTable.Party      = 1;
          vendTable.doInsert();
          vendTable.clear();
          vendTable.AccountNum = '1002';
          vendTable.Blocked    = CustVendorBlocked::All;
          vendTable.Party      = 2;
          vendTable.doInsert();

          while select vendTable
         {
           info(strFmt(
           "%1 - %2",
            vendTable.AccountNum,
             vendTable.Blocked));
         }
        }
       }

Run the class and check the results, which may be similar to this:2.



Processing Data

[ 34 ]

How it works...
The key method in this recipe is setTmp(). This method is available in all the tables, and it
makes the current table instance behave as a temporary table in the current scope. Basically,
it creates an InMemory temporary table that has the same schema as the original table.

In this recipe, we create a new class and place all the code in its main() method. The reason
why we create a class, not a job, is that the main() method can be set to run on the server
tier by specifying the server modifier. This will improve the code's performance.

In the code, we first call the setTmp() method on the vendTable table to make it
temporary in the scope of this method. This means that any data manipulations will be lost
once the execution of this method is over and the actual table content will not be affected.

Next, we insert a couple of test records. Here, we use the doInsert() method to bypass
any additional logic, which normally resides in the table's insert() method. We have to
keep in mind that even the table becomes temporary; all the code in its insert(),
update(), delete(), initValue(), and other methods is still present and we have to
make sure that we don't call it unintentionally.

The last thing to do is to check for newly created records by listing the vendTable table. We
can see that although the table contains many actual records, only the records that we
inserted were displayed in the Infolog window. Additionally, the two records we inserted
do not appear in the actual table.

Copying a record
Copying existing data is one of the data manipulation tasks in Dynamics 365 for Finance
and Operations. There are numerous places in the standard D365 application where users
can create new data entries just by copying existing data and then modifying it. A few of the
examples are the Copy button in Cost management | Inventory accounting | Costing
versions and the Copy project button in Project management and accounting | Projects |
All projects. Also, although the mentioned copying functionality might not be that
straightforward, the idea is clear: the existing data is reused while creating new entries.

In this recipe, we will learn two ways to copy records in X++. We will discuss the usage of
the table's data() method, the global buf2buf() function, and their differences. As an
example, we will copy one of the existing ledger account records into a new record.



Processing Data

[ 35 ]

How to do it...
Carry out the following steps in order to complete this recipe:

Navigate to General ledger | Chart of accounts | Accounts | Main accounts and1.
find the account to be copied. In this example, we will use 130100, as shown in
the following screenshot:



Processing Data

[ 36 ]

Create a Dynamics 365 for Operations Project, create a runnable class named2.
MainAccountCopy with the following code snippet, and run it:

        class MainAccountCopy
       {
         /// <summary>
         /// Runs the class with the specified arguments.
         /// </summary>
         /// <param name = "_args">The specified arguments.</param>
         public static void main(Args _args)
        {
          MainAccount mainAccount1;
          MainAccount mainAccount2;

          mainAccount1 = MainAccount::findByMainAccountId(
          '130100');

          ttsBegin;
          mainAccount2.data(mainAccount1);
          mainAccount2.MainAccountId = '130101';
          mainAccount2.Name += ' - copy';

          if (!mainAccount2.validateWrite())
         {
           throw Exception::Error;
         }
          mainAccount2.insert();

          ttsCommit;
        }

       }



Processing Data

[ 37 ]

Navigate to General ledger | Chart of accounts | Accounts | Main accounts3.
again and notice that there are two identical records now, as shown in the
following screenshot:

How it works...
In this recipe, we have two variables: mainAccount1 for the original record and
mainAccount2 for the new record. First, we find the original record by calling
findMainAccountId() in the MainAccount table.

Next, we copy it to the new one. Here, we use the data() table's member method, which
copies all the data fields from one variable to another.



Processing Data

[ 38 ]

After that, we set a new ledger account number, which is a part of a unique table index.

Finally, we call insert() on the table if validateWrite() is successful. In this way, we
create a new ledger account record, which is exactly the same as the existing one apart from
the account number.

There's more...
As we saw before, the data() method copies all the table fields, including system fields
such as the record ID, company account, and created user. Most of the time, it is OK
because when the new record is saved, the system fields are overwritten with the new
values. However, this function may not work for copying records across the companies. In
this case, we can use another function called buf2Buf(). This function is a global function
and is located in the Global class, which you can find by navigating to AOT | Classes. The
buf2Buf() function is very similar to the table's data() method with one major difference.
The buf2Buf() function copies all the data fields excluding the system fields. The code in
the function is as follows:

    static void buf2Buf(
     Common _from,
     Common _to,
     TableScope _scope = TableScope::CurrentTableOnly)
    {
      DictTable   dictTable = new DictTable(_from.TableId);
      FieldId     fieldId   = dictTable.fieldNext(0, _scope);

      while (fieldId && ! isSysId(fieldId))
     {
        _to.(fieldId)   = _from.(fieldId);
        fieldId         = dictTable.fieldNext(fieldId, _scope);
     }
    }

We can clearly see that during the copying process, all the table fields are traversed, but the
system fields, such as RecId or dataAreaId, are excluded. The isSysId() helper function
is used for this purpose.



Processing Data

[ 39 ]

In order to use the buf2Buf() function, the code of the MainAccountCopy job can be 
amended as follows:

    class MainAccountCopyBuf2Buf
   {
     /// <summary>
     /// Runs the class with the specified arguments.
     /// </summary>
     /// <param name = "_args">The specified arguments.</param>
      public static void main(Args _args)
     {
       MainAccount mainAccount1;
       MainAccount mainAccount2;

       mainAccount1 = MainAccount::findByMainAccountId('130100');

       ttsBegin;
       buf2Buf(mainAccount1, mainAccount2);

       mainAccount2.MainAccountId = '130102';
       mainAccount2.Name += ' - copy';

       if (!mainAccount2.validateWrite())
      {
        throw Exception::Error;
      }

       mainAccount2.insert();

       ttsCommit;
     }

   }

Building a query object
Query objects in Dynamics 365 for Finance and Operations are used to build SQL
statements for reports, views, forms, and so on. They are normally created in the AOT using
the drag and drop functionality and by defining various properties. Query objects can also
be created from the code at runtime. This is normally done when AOT tools cannot handle
complex and/or dynamic queries.



Processing Data

[ 40 ]

In this recipe, we will create a query from the code to retrieve project records from the
Project management module. We will select only the projects of the type Time & material,
starting with 00005 in its number and containing at least one hour transaction. The project
list will be sorted by project name.

How to do it...
Carry out the following steps in order to complete this recipe:

Open the project area, create a runnable class named ProjTableQuery, and enter1.
the following code snippet:

         class ProjTableQuery
       {
         /// <summary>
         /// Runs the class with the specified arguments.
         /// </summary>
         /// <param name = "_args">The specified arguments.</param>
         public static void main(Args _args)
        {
          Query                   query;
          QueryBuildDataSource    qbds1;
          QueryBuildDataSource    qbds2;
          QueryBuildRange         qbr1;
          QueryBuildRange         qbr2;
          QueryRun                queryRun;
          ProjTable               projTable;

          query = new Query();

          qbds1 = query.addDataSource(tableNum(ProjTable));
          qbds1.addSortField(
          fieldNum(ProjTable, Name),
          SortOrder::Ascending);

          qbr1 = qbds1.addRange(fieldNum(ProjTable,Type));
          qbr1.value(queryValue(ProjType::TimeMaterial));

          qbr2 = qbds1.addRange(fieldNum(ProjTable,ProjId));
          qbr2.value(
           SysQuery::valueLike(queryValue('00005')));

          qbds2 = qbds1.addDataSource(tableNum(ProjEmplTrans));
          qbds2.relations(true);
          qbds2.joinMode(JoinMode::ExistsJoin);



Processing Data

[ 41 ]

          queryRun = new QueryRun(query);

          while (queryRun.next())
         {
           projTable = queryRun.get(tableNum(ProjTable));
            info(strFmt(
            "%1, %2, %3",
            projTable.ProjId,
            projTable.Name,
            projTable.Type));
         }
        }
       }

Run the class and you will get a screen similar to the following screenshot:2.

How it works...
First, we create a new query object. Next, we add a new ProjTable data source to the
query object by calling its addDataSource() member method. The method returns a
reference to the QueryBuildDataSource object-qbds1. Here, we call the addSortField()
method to enable sorting by the project name.



Processing Data

[ 42 ]

The following two blocks of code create two ranges. The first block of code shows only the
projects of the time & material type and the second one lists only the records where the
project number starts with 00005. These two filters are automatically added together using
SQL's AND operator. The QueryBuildRange objects are created by calling the addRange()
member method of the QueryBuildDataSource object with the field ID number as the
argument. The range value is set by calling value() on the QueryBuildRange object itself.
We use the queryValue()function from the Global class and the valueLike() function
from the SysQuery class to prepare the values before applying them as a range. More
functions, such as queryNotValue() and queryRange(), can be found in the Global
application class by navigating to AOT | Classes. Note that these functions are actually
shortcuts to the SysQuery application class, which in turn has even more interesting helper
methods that might be handy for every developer.

Adding another data source to an existing one connects both the data sources using SQL's
JOIN operator. In this example, we are displaying projects that have at least one posted
hour line. We start by adding the ProjEmplTrans table as another data source.

Next, we need to add relationships between the tables. If relationships are not defined on
tables, we will have to use the addLink() method with relation field's ID numbers. In this
example, relations in the tables are already defined, so you only need to enable them by
calling the relations() method with true as an argument.

Calling joinMode() with JoinMode::ExistsJoin as a parameter ensures that only the
projects that have at least one hour transaction will be selected. In situations like this, where
we do not need any data from the second data source, performance-wise it is better to use
an exists join instead of the inner join. This is because the inner join fetches the data
from the second data source and, therefore, takes longer to execute.

The last thing that needs to be done is to create and run the queryRun object and show the
selected data on the screen.

There's more...
It is worth mentioning a couple of specific cases when working with query objects from the
code. One of them is how to use the OR operator and the other one is how to address array
fields.



Processing Data

[ 43 ]

Using the OR operator
As you have already noted, regardless of how many ranges are added, all of them will be
added together using SQL's AND operator. In most cases, this is fine, but sometimes complex
user requirements demand ranges to be added using SQL's OR operator. There might be a
number of workarounds, such as using temporary tables or similar tools, but we can use the
Dynamics 365 for Operations feature that allows you to pass a part of a raw SQL string as a
range.

In this case, the range has to be formatted in a manner similar to a fully-qualified SQL
where clause, including field names, operators, and values. The expressions have to be
formatted properly before you use them in a query. Here are some of the rules:

The expression must be enclosed within single quotes
Inside, the whole expression has to be enclosed within parentheses
Each subexpression must also be enclosed within parentheses
String values have to be enclosed within double quotes
For enumerations, use their numeric values

For value formatting, use various Dynamics 365 for Operations functions, such as
queryValue() and date2StrXpp(), or methods from the SysQuery class.

Let's replace the code snippet from the previous example with the following lines of code:

    qbr2.value(SysQuery::valueLike (queryValue('00005')));
    with the new code:
    qbr2.value(strFmt('((%1 like "%2") || (%3 = %4))',
     fieldStr(ProjTable,ProjId),queryvalue('00005*'),
      fieldStr(ProjTable,Status),ProjStatus::InProcess+0));

Notice that by adding zero to the enumeration in the previous code, we can force the
strFmt() function to use the numeric value of the enumeration. The strFmt() output
should be similar to the following line:

    ((ProjId like "00005*") || (Status = 3))



Processing Data

[ 44 ]

Now if you run the code, besides all the projects starting with 00005, the result will also
include all the active projects, as shown in the following screenshot:

See also
The Creating a custom filter recipe in Chapter 3, Working with Data in Forms
The Using a form for building a lookup recipe in Chapter 4, Building Lookups

Using a macro in a SQL statement
In a standard Dynamics 365 for Finance and Operations application, there are macros, such
as InventDimJoin and InventDimSelect, which are reused numerous times across the
application. These macros are actually full or partial X++ SQL queries that can be called with
various arguments. Such approaches save development time by allowing you to reuse
pieces of X++ SQL queries.

In this recipe, we will create a small macro, which holds a single where clause, to display
only the active vendor records. Then, we will create a class that uses the created macros to
display a vendor list.



Processing Data

[ 45 ]

How to do it...
Carry out the following steps in order to complete this recipe:

Create a Dynamics 365 for Operations Project and create a new macro named1.
VendTableNotBlocked with the following code snippet:

       (%1.Blocked == CustVendorBlocked::No)

In the Dynamics 365 Project, create a new runnable class called2.
VendTableMacro with the following code:

       class VendTableMacro
      {
        /// <summary>
        /// Runs the class with the specified arguments.
        /// </summary>
        /// <param name = "_args">The specified arguments.</param>
        public static void main(Args _args)
       {
         VendTable   vendTable;

         while select vendTable
         where #VendTableNotBlocked(vendTable)
        {
           info(strFmt(
           "%1 - %2",
           vendTable.AccountNum,
           vendTable.name()));
        }
       }

      }

Run the job and check the results, as shown in the following screenshot:3.



Processing Data

[ 46 ]

How it works...
First, we define a macro that holds the where clause. Normally, the purpose of defining
SQL in a macro is to reuse it a number of times in various places. We use %1 as an
argument. More arguments can be used.

Next, we create a job with the select statement. Here, we use the previously created macro
in the where clause and pass vendTable as an argument.

The query works like any other query, but the advantage is that the code in the macro can
be reused elsewhere.

Remember that before we start using macros in SQL queries, we should be aware of the
following caveats:

Too much code in a macro might reduce the SQL statement's readability for other
developers
Cross-references do not take into account the code inside the macro
Changes in the macro will not reflect in the objects where the macro is used until
the objects are recompiled



Processing Data

[ 47 ]

Executing a direct SQL statement
Dynamics 365 for Finance and Operations allows developers to build X++ SQL statements
that are flexible enough to fit into any custom business process. However, in some cases, the
usage of X++ SQL is either not effective or not possible at all. One such case is when we run
data upgrade tasks during an application version upgrade. A standard application contains
a set of data upgrade tasks to be completed during the version upgrade. If the application is
highly customized, then most likely, standard tasks have to be modified in order to reflect
data dictionary customization's, or a new set of tasks have to be created to make sure data is
handled correctly during the upgrade.

Normally, at this stage, SQL statements are so complex that they can only be created using
database-specific SQL and executed directly in the database. Additionally, running direct
SQL statements dramatically increases data upgrade performance because most of the code
is executed on the database server where all the data resides. This is very important while
working with large volumes of data.

This recipe will demonstrate how to execute SQL statements directly. We will connect to the
current Dynamics 365 for Finance and Operations database directly using an additional
connection and retrieve a list of vendor accounts.

How to do it...
Carry out the following steps in order to complete this recipe:

In the Dynamics 365 Project, create a new class named VendTableSql using the1.
following code snippet:

        class VendTableSql
       {
         /// <summary>
         /// Runs the class with the specified arguments.
         /// </summary>
         /// <param name = "_args">The specified arguments.</param>
         public static void main(Args _args)
        {
          UserConnection                  userConnection;
          Statement                       statement;
          str                             sqlStatement;
          SqlSystem                       sqlSystem;
          SqlStatementExecutePermission   sqlPermission;
          ResultSet                       resultSet;
          DictTable                       tblVendTable;



Processing Data

[ 48 ]

          DictTable                       tblDirPartyTable;
          DictField                       fldParty;
          DictField                       fldAccountNum;
          DictField                       fldDataAreaId;
          DictField                       fldBlocked;
          DictField                       fldRecId;
          DictField                       fldName;
          tblVendTable     = new DictTable(tableNum(VendTable));
          tblDirPartyTable = new DictTable(tableNum(DirPartyTable));

          fldParty = new DictField(
           tableNum(VendTable),
           fieldNum(VendTable,Party));

          fldAccountNum = new DictField(
           tableNum(VendTable),
           fieldNum(VendTable,AccountNum));

          fldDataAreaId = new DictField(
           tableNum(VendTable),
           fieldNum(VendTable,DataAreaId));

          fldBlocked = new DictField(
           tableNum(VendTable),
           fieldNum(VendTable,Blocked));

          fldRecId = new DictField(
           tableNum(DirPartyTable),
           fieldNum(DirPartyTable,RecId));

          fldName = new DictField(
           tableNum(DirPartyTable),
           fieldNum(DirPartyTable,Name));

          sqlSystem = new SqlSystem();

          sqlStatement = 'SELECT %1, %2 FROM %3 ' +
          'JOIN %4 ON %3.%5 = %4.%6 ' +
          'WHERE %7 = %9 AND %8 = %10';

          sqlStatement = strFmt(
           sqlStatement,
           fldAccountNum.name(DbBackend::Sql),
           fldName.name(DbBackend::Sql),
           tblVendTable.name(DbBackend::Sql),
           tblDirPartyTable.name(DbBackend::Sql),
           fldParty.name(DbBackend::Sql),
           fldRecId.name(DbBackend::Sql),



Processing Data

[ 49 ]

           fldDataAreaId.name(DbBackend::Sql),
           fldBlocked.name(DbBackend::Sql),
           sqlSystem.sqlLiteral(curext(), true),
           sqlSystem.sqlLiteral(CustVendorBlocked::No, true));

          userConnection = new UserConnection();
          statement      = userConnection.createStatement();

          sqlPermission = new SqlStatementExecutePermission(
           sqlStatement);

          sqlPermission.assert();

          resultSet      = statement.executeQuery(sqlStatement);

          CodeAccessPermission::revertAssert();

          while (resultSet.next())
         {
           info(strFmt(
           "%1 - %2",
           resultSet.getString(1),
           resultSet.getString(2)));
         }
        }
       }

Run the class to retrieve a list of vendors directly from the database, as shown in2.
the following screenshot:



Processing Data

[ 50 ]

How it works...
We start the code by creating the DictTable and DictField objects to handle the vendor
table and its fields, which are used later in the query. The DirPartyTable is used to get
additional vendor information.

A new SqlSystem object is also created. It is used to convert D365 types to SQL types.

Next, we set up a SQL statement with a number of placeholders for the table or field names
and field values to be inserted later.

The main query creation takes place next, when the query placeholders are replaced with
the right values. Here, we use the previously created DictTable and DictField type
objects by calling their name() methods with the DbBackend::Sql enumeration as an
argument. This ensures that we pass the name in the exact manner it is used in the
database-some of the SQL field names are not necessary, which is the same as field names
within the application.

We also use the sqlLiteral() method of the previously created sqlSystem object to
properly format SQL values in order to ensure that they do not have any unsafe characters.

The value of the sqlStatement variable that holds the prepared SQL query depending on
your environment is as follows:

    SELECT ACCOUNTNUM, NAME FROM VENDTABLE
    JOIN DIRPARTYTABLE ON VENDTABLE.PARTY = DIRPARTYTABLE.RECID
    WHERE DATAAREAID = 'usmf' AND BLOCKED = 0

Once the SQL statement is ready, we initialize a direct connection to the database and run
the statement. The results are returned in the resultSet object, and we get them by using
the while statement and calling the next() method until the end.

Note that we created an sqlPermission object of the type
SqlStatementExecutePermission here and called its assert() method before
executing the statement. This is required in order to comply with Dynamics 365 for
Operation's trustworthy computing requirements.

Another thing that needs to be mentioned is that when building direct SQL queries, special
attention has to be paid to license, configuration, and security keys. Some tables or fields
might be disabled in the application and may contain no data in the database.

The code in this recipe can be also used to connect to external ODBC databases. We only
need to replace the UserConnection class with the OdbcConnection class and use text
names instead of the DictTable and DictField objects.



Processing Data

[ 51 ]

There's more...
The standard Dynamics 365 for Finance and Operations application provides an alternate
way of building direct SQL statements by using a set of SQLBuilder classes. By using these
classes, we can create SQL statements as objects, as opposed to text. Next, we will
demonstrate how to use a set of SQLBuilder classes. We will create the same SQL
statement as we did before.

First, in a Dynamics 365 project, create another class named VendTableSqlBuilder using
the following code snippet:

     class VendTableSqlBuilder
    {
      /// <summary>
      /// Runs the class with the specified arguments.
      /// </summary>
      /// <param name = "_args">The specified arguments.</param>
       public static void main(Args _args)
      {
        UserConnection                  userConnection;
        Statement                       statement;
        str                             sqlStatement;
        SqlStatementExecutePermission   sqlPermission;
        ResultSet                       resultSet;
        SQLBuilderSelectExpression      selectExpr;
        SQLBuilderTableEntry            vendTable;
        SQLBuilderTableEntry            dirPartyTable;
        SQLBuilderFieldEntry            accountNum;
        SQLBuilderFieldEntry            dataAreaId;
        SQLBuilderFieldEntry            blocked;
        SQLBuilderFieldEntry            name;

        selectExpr = SQLBuilderSelectExpression::construct();
        selectExpr.parmUseJoin(true);

        vendTable = selectExpr.addTableId(
         tablenum(VendTable));

        dirPartyTable = vendTable.addJoinTableId(
         tablenum(DirPartyTable));

        accountNum = vendTable.addFieldId(
         fieldnum(VendTable,AccountNum));

        name = dirPartyTable.addFieldId(
         fieldnum(DirPartyTable,Name));



Processing Data

[ 52 ]

        dataAreaId = vendTable.addFieldId(
         fieldnum(VendTable,DataAreaId));

        blocked = vendTable.addFieldId(
         fieldnum(VendTable,Blocked));
        vendTable.addRange(dataAreaId, curext());
         vendTable.addRange(blocked, CustVendorBlocked::No);

        selectExpr.addSelectFieldEntry(
         SQLBuilderSelectFieldEntry::newExpression(
          accountNum,
          'AccountNum'));

        selectExpr.addSelectFieldEntry(
         SQLBuilderSelectFieldEntry::newExpression(
          name, 'Name'));

        sqlStatement   = selectExpr.getExpression(null);

        userConnection = new UserConnection();
        statement      = userConnection.createStatement();

        sqlPermission = new SqlStatementExecutePermission(
         sqlStatement);

        sqlPermission.assert();

        resultSet = statement.executeQuery(sqlStatement);

        CodeAccessPermission::revertAssert();

        while (resultSet.next())
       {
         info(strfmt(
         "%1 - %2",
          resultSet.getString(1),
          resultSet.getString(2)));
       }
      }

    }

In the preceding method, we first create a new selectExpr object, which is based on the
SQLBuilderSelectExpression class. It represents the object of the SQL statement.



Processing Data

[ 53 ]

Next, we add the VendTable table to it by calling its member method addTableId(). This
method returns a reference to the vendTable object of the type SQLBuilderTableEntry,
which corresponds to a table node in a SQL query. We also add DirPartyTable as a joined
table.

Then, we create a number of field objects of the SQLBuilderFieldEntry type to be used
later and two ranges to show only this company account and only the active vendor
accounts.

We use addSelectFieldEntry() to add two fields to be selected. Here, we use the
previously created field objects.

The SQL statement is generated once the getExpression() method is called, and the rest 
of the code is the same as in the previous example.

Running the class will give us results, which are exactly similar to the ones we got earlier.

Enhancing the data consistency checks
It is highly recommended that you run the standard Dynamics 365 for Finance and
Operations data consistency checks from time to time, which can be found by navigating to
System administration | Periodic tasks | Database | Consistency check, to check the
system's data integrity. This function finds orphan data, validates parameters, and does
many other things, but it does not do everything. The good thing is that it can be easily
extended.

In this recipe, we will see how we can enhance the standard Dynamics 365 for Finance and
Operations consistency check to include more tables in its data integrity validation.

Getting ready
Before we start, we need to create an invalid setup in order to make sure that we can
simulate data inconsistency. Navigate to Fixed assets | Setup | Value models and create a
new model, for instance, TEST, as shown in the following screenshot:



Processing Data

[ 54 ]

Navigate to Fixed assets | Setup | Fixed asset posting profiles and under the Ledger
accounts group, create a new record with the newly created value model for any of the
posting types, as shown here:

Go back to the Value models form and delete the previously created value model. Now, we
have a nonexistent value model in the fixed asset posting settings.



Processing Data

[ 55 ]

How to do it...
Carry out the following steps in order to complete this recipe:

In the Dynamics 365 Project, create a new class named1.
AssetConsistencyCheck with the following code snippet:

class AssetConsistencyCheck extends SysConsistencyCheck
{
   client server static ClassDescription description()
    {
      return "Fixed assets";
    }

    client server static HelpTxt helpText()
    {
      return "Consistency check of the fixed asset module";
    }

    public Integer executionOrder()
    {
      return 1;
    }

    public void run()
    {
      this.kernelCheckTable(tableNum(AssetLedgerAccounts));
    }

}



Processing Data

[ 56 ]

Navigate to System administration | Periodic tasks | Database | Consistency2.
check, select the newly created Fixed assets option from the Module drop-down
list, and click on OK to run the check, as shown here:



Processing Data

[ 57 ]

Now, the message displayed in the Infolog window should complain about the3.
missing value model in the fixed assets posting settings, as shown in the
following screenshot:

How it works...
The consistency check in Dynamics 365 for Finance and Operations validates only the
predefined list of tables for each module. The system contains a number of classes derived
from SysConsistencyCheck. For example, the CustConsistencyCheck class is
responsible for validating the Accounts receivable module, LedgerConsistencyCheck for
validating General ledger, and so on.



Processing Data

[ 58 ]

In this recipe, we created a new class named AssetConsistencyCheck, extending the
SysConsistencyCheck class for the fixed asset module. The following methods were
created:

description(): This provides a name to the consistency check form.
helpText(): This displays some explanation about the check.
executionOrder(): This determines where the check is located in the list.
run(): This holds the code to perform the actual checking. Here, we use the
kernelCheckTable() member method, which validates the given table.

There's more...
The classes that we just mentioned can only be executed from the main Consistency check
form. Individual checks can also be invoked as standalone functions. We just need to create
an additional method to allow the running of the class:

 static void main(Args _args)
{
  SysConsistencyCheckJob consistencyCheckJob;
  AssetConsistencyCheck  assetConsistencyCheck;

  consistencyCheckJob = new SysConsistencyCheckJob(
   classIdGet(assetConsistencyCheck));

  if (!consistencyCheckJob.prompt())
 {
   return;
 }

  consistencyCheckJob.run();
}

Using the date effectiveness feature
Date effectiveness allows developers to easily create date range fields. Date ranges are used
to define record validity between the specified dates, for example, defining employee
contract dates and defining vendor license validity.

This feature significantly reduces the amount of time that developers spend on developing
business logic/code and also provides a consistent approach to implement data range fields.



Processing Data

[ 59 ]

This recipe will demonstrate the basics of date effectiveness. We will create a new table to
implement date range validation.

How to do it...
Carry out the following steps in order to complete this recipe:

Run Visual Studio as admin:

Load your earlier project.1.
Add a new TablePktEmployeeContract.2.

Set the property as follows:

Property Value

ValidTimeStateFieldType Date



Processing Data

[ 60 ]

Note the two new fields that are automatically added to the table, as shown in the
following screenshot (ValidTo and ValidFrom):



Processing Data

[ 61 ]

Now create a new index as follows and add fields as follows:3.

Set the following mentioned property for the index here:4.

Property Value

AlternateKey Yes

ValidTimeStateKey Yes

ValidTimeStateMode NoGap



Processing Data

[ 62 ]

Now open the table and enter some records in this table itself instead of creating5.
a new form for the table. Right-click on Table and select Browse table:

How it works...
We start the recipe by setting the ValidTimeStateFieldType property to Date in the
SysEmailTable table. This automatically creates two new fields--ValidFrom and ValidTo
that are used to define a date range.

Next, we add the created fields to the primary index where the EmplNum field is used and
adjust the index's properties.

We set the AlternateKey property to Yes in order to ensure that this index is a part of an
alternate key.

We set the ValidTimeStateKey property to Yes in order to specify that the index is used
to determine valid date ranges.

We also set the ValidTimeStateMode property to NoGap in order to ensure that email
templates with the same identification number can be created within continuous periods.
This property can also be set to Gap, allowing noncontiguous date ranges.



2
Working with Forms

In this chapter, we will cover the following recipes:

Creating dialogs using the RunBase framework
Handling the dialog event
Creating dialogs using the SysOperation framework
Building a dynamic form
Adding a form splitter
Creating a modal form
Modifying multiple forms dynamically
Storing the last form values
Using a Tree control
Adding the View details link
Selecting a Form Pattern
Full list of form patterns
Creating a new form

Introduction
Forms in Dynamics 365 for Finance and Operations represent the user interface and are
mainly used to enter or modify data. They are also used to run reports, execute user
commands, validate data, and so on.



Working with Forms

[ 64 ]

Normally, forms are created using the AOT by producing a form object and adding form
controls, such as tabs, tab pages, grids, groups, data fields, and images. The form's behavior
is controlled by its properties or the code in its member methods. The behavior and layout
of form controls are also controlled by their properties and the code in their member
methods. Although it is very rare, forms can also be created dynamically from code.

In this chapter, we will cover various aspects of using Dynamics 365 for Finance and
Operations forms. We start by building Dynamics 365 for Finance and Operations dialogs,
which are actually dynamic forms, and then go on to explain how to handle their events.
The chapter will also show you how to build dynamic forms, how to add dynamic controls
to existing forms, and how to make modal forms.

Creating dialogs using the RunBase
framework
Dialogs are a way to present users with a simple input form. They are commonly used for
small user tasks, such as filling in report values, running batch jobs, and presenting only the
most important fields to the user when creating a new record. Dialogs are normally created
from X++ code without storing the actual layout in the AOT.

The application class called Dialog is used to build dialogs. Other application classes, such
as DialogField, DialogGroup, and DialogTabPage, are used to create dialog controls.
The easiest way to create dialogs is to use the RunBase framework. This is because the
framework provides a set of predefined methods, which make the creation and handling of
the dialog well-structured, as opposed to having all the code in a single place.

In this example, we will demonstrate how to build a dialog from code using the RunBase
framework class. The dialog will contain customer table fields shown in different groups
and tabs for creating a new record. There will be two tab pages, General and Details. The
first page will have the Customer account and Name input controls. The second page will
be divided into two groups, Setup and Payment, with relevant fields inside each group.
The actual record will not be created, as it is beyond the scope of this example. However, for
demonstration purposes, the information specified by the user will be displayed in the
Infolog window.



Working with Forms

[ 65 ]

How to do it...
Carry out the following steps in order to complete this recipe:

Add a new project Create dialog.1.
Add a new Runnable class and rename it MyDialog. Now, add the following2.
code snippet:

Declare all your objects in the class, as shown follows:

        class MyDialog extends RunBase
        {
           DialogField    fieldAccount;
           DialogField    fieldName;
           DialogField    fieldGroup;
           DialogField    fieldCurrency;
           DialogField    fieldPaymTermId;
           DialogField    fieldPaymMode;
           CustName       custName;
           CustGroupId    custGroupId;
           CurrencyCode   currencyCode;
           CustPaymTermId paymTermId;
           CustPaymMode   paymMode;

         public container pack()
            {
               return conNull();
            }

            public boolean unpack(container _packedClass)
            {
              return true;
            }

Create a dialog method to capture runtime user inputs for customer details:

            Object dialog()
            {
               Dialog          dialog;
               DialogGroup     groupCustomer;
               DialogGroup     groupPayment;

               dialog = super();

               dialog.caption("Customer information");

               fieldAccount=dialog.addField



Working with Forms

[ 66 ]

               (extendedTypeStr(CustVendAC),"Customer account");

               fieldName =dialog.addField(extendedTypeStr(CustName));

               dialog.addTabPage("Details");

               groupCustomer  = dialog.addGroup("Setup");
               fieldGroup=dialog.addField
                (extendedTypeStr(CustGroupId));
               fieldCurrency=dialog.addField
                (extendedTypeStr(CurrencyCode));

               groupPayment    = dialog.addGroup("Payment");
               fieldPaymTermId=dialog.addField
                (extendedTypeStr(CustPaymTermId));
               fieldPaymMode = dialog.addField
                (extendedTypeStr(CustPaymMode));

               return dialog;
            }

Now, when users select their desired values, we need to read all of them to show
in the infolog. Use getFromDialog to read a dialog field's value:

            public boolean getFromDialog()
            {
               custAccount  = fieldAccount.value();
               custName     = fieldName.value();
               custGroupId  = fieldGroup.value();
               currencyCode = fieldCurrency.value();
               paymTermId   = fieldPaymTermId.value();
               paymMode     = fieldPaymMode.value();
               return super();

            }

Use the run method to make Infolog statements, as in the following code:

            public void run()
            {
               info("You have entered customer information:");
               info(strFmt("Account: %1", custAccount));
               info(strFmt("Name: %1", custName));
               info(strFmt("Group: %1", custGroupId));
               info(strFmt("Currency: %1", currencyCode));
               info(strFmt("Terms of payment: %1", paymTermId));
               info(strFmt("Method of payment: %1", paymMode));
            }



Working with Forms

[ 67 ]

            public static void main(Args _args)
            {
               MyDialog    myDialog = new MyDialog();

                if (myDialog.prompt())
                {
                   myDialog.run();
                }
            }
        }

In order to test the dialog, right-click on this class and set as startup project.3.
Build your project. Now, run the project. The following form will appear in the4.
internet browser:



Working with Forms

[ 68 ]

Click on the Details tab page; you will see a screen similar to the following4.
screenshot:

Enter information in all the fields and click on OK. The results will be displayed5.
on the Infolog tab on top of the browser window.



Working with Forms

[ 69 ]

How it works...
First, we create a new class named MyDialog. By extending it from RunBase, we utilize a
standard approach to develop data manipulation functions in Dynamics 365 for Operations
. The RunBase framework will define a common structure and automatically add additional
controls, such as the OK and Cancel buttons, to the dialog.

Then, we declare class member variables, which will be used later. The DialogField type
variables are actual user input fields. The rest of the variables are used to store the values
returned from the user input.

The pack() and unpack() methods are normally used to convert an object into a container
and convert the container back into an object, respectively. A container is a common format
used to store objects in the user cache (SysLastValue) or to transfer the object between the
server and client tiers. The RunBase framework needs these two methods to be
implemented in all its subclasses. In this example, we are not using any of the pack() or
unpack() features, but because these methods are mandatory, we return an empty
container from pack() and we return true from unpack().

The layout of the actual dialog is constructed in the dialog() member method. Here, we
define local variables for the dialog itself-tab pages and groups. These variables, as opposed
to the dialog fields, do not store any values for further processing. The super() in the
method creates the initial dialog object for us and automatically adds the relevant controls,
including the OK and Cancel buttons.

Additional dialog controls are added to the dialog by using the addField(), addGroup(),
and addTabPage() methods. There are more methods, such as addText(), addImage(),
and addMenuItemButton(), which are used to add different types of controls. All the
controls have to be added to the dialog object directly. Adding an input control to groups or
tabs is done by calling addField() right after addGroup() or addTabPage(). In the
previous example, we added tab pages, groups, and fields in a top-down logical sequence.
Note that it is enough only to add a second tab page; the first tab page, labeled General, is
added automatically by the RunBase framework.



Working with Forms

[ 70 ]

Values from the dialog controls are assigned to the variables by calling the value()
member method of DialogField. If a dialog is used within the RunBase framework, as it
is used in this example, the best place to assign dialog control values to variables is the
getFormDialog() member method. The RunBase framework calls this method right after
the user clicks on OK.

The main processing is done in the run() method. For demonstration purposes, this class
only shows the user input in the Infolog tab on top of the browser window.

In order to make this class runnable, the main() static method has to be created. Here, we
create a new CustCreate object and invoke the user dialog by calling the prompt()
method. Once the user has finished entering customer details by clicking on OK, we call the
run() method to process the data.

Handling the dialog event
Sometimes, in the user interface, it is necessary to change the status of one field depending
on the status of another field. For example, if the user marks the Show filter checkbox, then
another field, Filter, appears or becomes enabled. In AOT forms, this can be done using the
modified() input control event. However, if this feature is required on runtime dialogs,
handling events is not that straightforward.

Often, existing dialogs have to be modified in order to support events. The easiest way to
do this is, of course, to convert a dialog into an AOT form. However, when the existing
dialog is complex enough, a more cost-effective solution would probably be to implement
dialog event handling instead of converting into an AOT form. Event handling in dialogs is
not flexible, as in the case of AOT forms; but in most cases, it does the job.

In this recipe, we will create a dialog similar to the previous dialog, but instead of entering
the customer number, we will be able to select the number from a list. Once the customer is
selected, the rest of the fields will be filled in automatically by the system from the customer
record.



Working with Forms

[ 71 ]

How to do it...
Carry out the following steps in order to complete this recipe:

Add a new class named MyDialogSelect with the following code snippet:1.

        class MyDialogSelect extends RunBase
        {
           DialogField fieldAccount;
           DialogField fieldName;
           DialogField fieldGroup;
           DialogField fieldCurrency;
           DialogField fieldPaymTermId;
           DialogField fieldPaymMode;

          public container pack()
          {
            return conNull();
          }

          public boolean unpack(container _packedClass)
          {
            return true;
          }

Create a dialog method to capture run time user inputs for customer details:2.

            Object dialog()
            {
               Dialog          dialog;
               DialogGroup     groupCustomer;
               DialogGroup     groupPayment;

               dialog = super();

               dialog.caption("Customer information");
               dialog.allowUpdateOnSelectCtrl(true);

               fieldAccount   = dialog.addField
               (extendedTypeStr(CustAccount),"Customer account");

               fieldName   =dialog.addField
               (extendedTypeStr(CustName));
               fieldName.enabled(false);

               dialog.addTabPage("Details");



Working with Forms

[ 72 ]

               groupCustomer   = dialog.addGroup("Setup");
               fieldGroup   = dialog.addField
               (extendedTypeStr(CustGroupId));
               fieldCurrency = dialog.addField
               (extendedTypeStr(CurrencyCode));
               fieldGroup.enabled(false);
               fieldCurrency.enabled(false);

               groupPayment    = dialog.addGroup("Payment");
               fieldPaymTermId =dialog.addField
               (extendedTypeStr(CustPaymTermId));
                fieldPaymMode = dialog.addField
                (extendedTypeStr(CustPaymMode));
               fieldPaymTermId.enabled(false);
               fieldPaymMode.enabled(false);

                 return dialog;
            }

            public void dialogSelectCtrl()
            {
               CustTable custTable;

               custTable = CustTable::find(fieldAccount.value());
               fieldName.value(custTable.name());
               fieldGroup.value(custTable.CustGroup);
               fieldCurrency.value(custTable.Currency);
               fieldPaymTermId.value(custTable.PaymTermId);
               fieldPaymMode.value(custTable.PaymMode);
            }

            public static void main(Args _args)
            {
               MyDialogSelect myDialogSelect = new MyDialogSelect();

               if (myDialogSelect.prompt())
                {
                   myDialogSelect.run();
                }
            }

        }



Working with Forms

[ 73 ]

Set this class as Set as Startup Object3.



Working with Forms

[ 74 ]

Save all your changes and build your project. Now run the project. The following4.
form will appear in an internet browser.
Run the project, select any customer from the list, and move the cursor to the next5.
control. Notice how the rest of the fields were automatically populated with the
customer's information, as shown in the following screenshot:



Working with Forms

[ 75 ]

When you click on the Details tab page, you will see more information about the6
customer, as shown in the following screenshot:

How it works...
The new class named MyDialogSelect is actually a copy of the MyDialog class from the
previous recipe, with a few changes. In its class declaration, we leave all the DialogField
declarations and remove the rest of the variables.



Working with Forms

[ 76 ]

The pack() and unpack() methods remain the same, as we are not using any of their
features.

In the dialog() member method, we call the allowUpdateOnSelectCtrl() method with
the true argument to enable input control event handling. We also disable all the controls,
apart from Customer account, by calling enable() with the false parameter for each
control.

The dialogSelectCtrl() member method of the RunBase class is called every time the
user modifies any input control in the dialog. It is the place where we have to add all the
required code to ensure that in our case, all the controls are populated with the correct data
from the customer record-once Customer account is selected.

The main() method ensures that the class is runnable.

See also
The Creating dialogs using the RunBase framework recipe

Creating dialogs using the SysOperation
framework
SysOperation is a framework in Dynamics 365 for Finance and Operations that allows
application logic to be written in a way that supports running operations interactively or via
the D365 batch server. The SysOperation framework follows the MVC (Model-View-
Controller) pattern. As the name implies, the MVC pattern isolates the Model, View, and
Controller components, which makes the process loosely coupled built over the
SysOperation framework. Depending on parameters, the controller can execute different
service operations under four main execution modes. Regardless of which mode a service is
running in, the code runs on a server. This makes the minimum number of round trips
between server and client.

Synchronous: When a service is run in synchronous mode, although it runs on a
server, it freezes the Dynamics 365 for Operations browser client. A call is
initiated from the client and an object is marshaled to the server to run in CIL.
This is good for smaller processes.



Working with Forms

[ 77 ]

Asynchronous: In an asynchronous call to service, the client remains responsive.
They only work using the WCF asynchronous service call mechanism. This is
why it is necessary to have it running as an AIF service. One should drop it to the
Dynamics 365 for Operations service group and redeploy the service group. This
is good for lengthy processes where durability is not important.
Reliable Asynchronous: Works like batch service. As soon as a call is initiated to
run a service in reliable asynchronous mode, it is scheduled to be run on the
batch server instantly, but removed as soon as it finishes the job. One can see it
among other scheduled jobs. Since it runs on a batch server, it can exploit the
power of parallel processing. It is used in scenarios where a job needs to be run
on a server and not to schedule. There is room for performance enhancement
making use of parallel processing among different AOS.
Scheduled Batch: A job is scheduled to run on a batch server. This is similar to
reliable asynchronous, except that it does not delete the job instance once the job
is finished. This is used for jobs that need to be run repeatedly at specified time
intervals. There is room for performance enhancements making use of parallel
processing among different AOS.

In this recipe, we will create a dialog which will take certain parameters. Based on the
parameters provided, customer's balance will be displayed onscreen by pressing the button
on the All Customers form to Display balances. It can be opened by navigating to Accounts
receivable | Customers | All Customers.

Getting ready
We will be using the following development artifacts for demonstration purposes.

Data contract: The data contract (CustBalanceDataContract) is the model 
class in which we define which attributes we need for our operation, commonly
set as parameters by the user in a dialog. It's just a model class with an attribute,
in which we will use the DataContractAttribute attribute to decorate our
class declaration. For each member variable, we have to define one parm
methods using the attribute DataMemberAttribute, which will work like getter
setter method. Additionally, if we want some more methods to be available to us,
we can also extend the standard class SysOperationDataContractBase. With
this class, we can define how our basic dialog will look to the user. We can define
our labels, groups, sizes, and types of parameters.



Working with Forms

[ 78 ]

How to do it...
Carry out the following steps in order to complete this recipe:

In the VS project , create a new class called CustBalanceDataContract with the1.
following code snippet:

        [
        DataContractAttribute,
        SysOperationContractProcessingAttribute
        (classStr(CustBalanceUIBuilder)),
        SysOperationGroupAttribute
        ('Date',"@ApplicationPlatform:SingleSpace", '1')
        ]
        class CustBalanceDataContract implementsSysOperationValidatable
        {
           NoYesId     allowModifyDate;
           TransDate   transDate;
           str packedQuery;

           /// <summary>
           /// Gets or sets the value of the datacontract parameter
                DateTransactionDate.
           /// </summary>
           /// <param name="_transDate">
           /// The new value of the datacontract parameter
                DateTransactionDate;
           /// </param>
           /// <returns>
           ///  The current value of datacontract parameter
                 DateTransactionDate
           /// </returns>
           [DataMemberAttribute('DateTransactionDate')
            ,SysOperationLabelAttribute(literalStr("@SYS11284")),
             SysOperationGroupMemberAttribute('Date'),
             SysOperationDisplayOrderAttribute('1')] // today's date
           public TransDate parmTransDate
            (TransDate _transDate = transDate)
            {
               transDate = _transDate;

               return transDate;
            }

           /// <summary>
           /// Gets or sets the value of the datacontract parameter
                DateControl.



Working with Forms

[ 79 ]

           /// </summary>
           /// <param name="_allowModifyDate">
           /// The new value of the datacontract parameter
                DateControl;
           /// </param>
           /// <returns>
           ///  The current value of datacontract parameter
                  DateControl
           /// </returns>
           [DataMemberAttribute('DateControl'),
           SysOperationLabelAttribute("Enable date control"),
           SysOperationGroupMemberAttribute('Date'),
           SysOperationDisplayOrderAttribute('0')]
           public NoYesId parmAllowModifyDate
            (NoYesId _allowModifyDate   = allowModifyDate)
            {
              allowModifyDate = _allowModifyDate;
              return allowModifyDate;
            }

           /// <summary>
           /// Validates the dialog values for errors.
           /// </summary>
           /// <returns>
           /// false if an error has occurred in the dialog values;
               otherwise, true .
           /// </returns>
           /// <remarks>
           /// The dialog values are handled through the contract.
           /// </remarks>
           public boolean validate()
            {
              boolean ret = true;

              if(!transDate && allowModifyDate)
              ret = checkFailed('Transaction date cannot be empty');

              return ret;
            }

           [DataMemberAttribute,
           AifQueryTypeAttribute
            ('_packedQuery',   querystr(CustTableSRS))
           ]
           public str parmQuery(str _packedQuery = packedQuery)
            {
              packedQuery = _packedQuery;
              return packedQuery;



Working with Forms

[ 80 ]

            }

           public Query getQuery()
            {
               return new
               Query(SysOperationHelper::base64Decode(packedQuery));
            }

            public void setQuery(Query _query)
            {
               packedQuery
                =SysOperationHelper::base64Encode(_query.pack());
            }

        }

Here, SysOperationGroupAttribute specifies how we group the contract
parameters and provides the order in which to display the group. Data contract
also implements the SysOperationValidatable interface, due to which we
need to override the Validate() method and validate parameters before actual
execution begins. Using SysOperationContractProcessingAttribute, we
specify the UIbuilder class to modify the parameter's behavior at runtime. We
will create this UI builder class later in this chapter.

In the VS project , create a new class called CustBalanceController with the2.
following code snippet:

Controller: As the name implies, this class has great responsibility for initiating
the operation. This class holds all the information regarding execution mode; it
should show a progress form or dialog. It is best practice not to write the whole
business login in the Controller class itself. That's why, in this demo, we have
created one service class to write our business logic, and that service class
reference is provided in this controller class main method.

        class CustBalanceController extends
         SysOperationServiceController
        {
           str packedQuery;
           CustBalanceDataContract contract;

          /// <summary>
          /// Sets the query ranges based on caller.
          /// </summary>
          /// <param name="_query">
          /// The hold the <c>Query</c> object of the service.



Working with Forms

[ 81 ]

          /// </param>
          public void setRanges()
          {
             QueryBuildRange         queryBuildRange;
             QueryBuildDataSource    queryBuildDataSource;
             FormDataSource          custTableDS;
             CustTable               custTable;
             str                     range;
             Query                   _query;

            contract = this.getDataContractObject() as
             CustBalanceDataContract;
            _query   = contract.getQuery();
            if (this.parmArgs()
            &&  this.parmArgs().caller()
            &&  this.parmArgs().dataset() == tableNum(CustTable))
             {
                custTableDS = FormDataUtil::getFormDataSource
                 (this.parmArgs().record());

                  if (_query && custTableDS)
                 {
                    // build range
                    for (custTable = custTableDS.getFirst(true) ?
                    custTableDS.getFirst(true): custTableDS.cursor();
                    custTable;
                    custTable = custTableDS.getNext())
                    {
                       range = range == '' ? custTable.AccountNum :
                       range
                       + ',' + custTable.AccountNum;
                    }

                        if (range)
                     {
                        queryBuildDataSource =
                         _query.dataSourceTable(tableNum(CustTable));

                        // check for QueryBuildDataSource
                        if (queryBuildDataSource)
                       {
                          // clear the old range,and then add it
                            queryBuildDataSource.clearRanges();
                        if (!queryBuildRange)
                        {
                           queryBuildRange
                           =queryBuildDataSource.addRange
                            (fieldNum(CustTable, AccountNum));



Working with Forms

[ 82 ]

                        }
                        queryBuildRange.value(range);
                       }
                     }
                 }
             }
                contract .setQuery(_query);
          }

            public static void main(Args _args)
            {
               CustBalanceController   controller = new
               CustBalanceController(classStr(CustBalanceService),
               methodStr(CustBalanceService,processData),
               SysOperationExecutionMode::Synchronous);

               controller.parmArgs(_args);
               controller.setRanges();
               controller.startOperation();
            }

        }

Here, we extend the SysOperationServiceController class to inherit
controller capabilities. The main method is used to create an instance of the
controller class, where we specify the service class and service method which need
to be called to execute the business logic. The setRanges() method is called to
specify ranges based on the caller.

Service: As I mentioned earlier, it's not a good practice to keep the whole
business logic in one controller class, because it would be a big responsibility for
a single class to handle. That's why, here, we have created a Service class which
is referenced in the Controller class.

In the VS project , create a new class called CustBalanceController with the3.
following code snippet:

        class CustBalanceService
        {
           [SysEntryPointAttribute]
            public void processData(CustBalanceDataContract
            _custBalanceDataContract)
            {
               QueryRun    queryRun;
               CustTable   custTable;
               Amount      balance;



Working with Forms

[ 83 ]

               ;
               // create a new queryrun object
               queryRun = new queryRun
               (_custBalanceDataContract.getQuery());

               // loop all results from the query
               while(queryRun.next())
              {
                 custTable = queryRun.get(tableNum(custTable));

                 if(_custBalanceDataContract.parmTransDate())
                 balance =  custTable.balanceMST
                  (dateNull(),
                   _custBalanceDataContract.parmTransDate());
               else
                  balance = custTable.balanceMST();
                  // display the balance
                  info(strFmt("%1 - %2",custTable.AccountNum,balance));
              }
           }
        }

Here, we get the contract parameters and execute the business logic. The customer
balance in the accounting currency is displayed as at a date if a certain date is
specified. Herein, we could also multithread our process.

UIBuider: This class is only required when you want to play with added
parameters (data member attributes) in the contract class. For example,
modifying lookup or enabling/disabling certain parameters on a dialog.

In the VS project , create a new class called CustBalanceUIBuilder with the4.
following code snippet:

class CustBalanceUIBuilder extends
SysOperationAutomaticUIBuilder
{
   DialogField     dialogFieldAllowModifyDate;
   DialogField     dialogFieldTransDate;

   CustBalanceDataContract custBalanceDataContract;

   public boolean allowModifyDateModified(FormCheckBoxControl
    _checkBoxControl)
    {
       // set enabled or disabled based on checkbox
       dialogFieldTransDate.enabled
        (any2enum(dialogFieldAllowModifyDate.value()));



Working with Forms

[ 84 ]

       // or alternatively
       //
       dialogFieldTransDate.enabled
        (_checkBoxControl.checked());
       return true;
    }

    public void postBuild()
    {
       ;
       super();

       // get datacontract
       custBalanceDataContract = this.dataContractObject();

       // get dialog fields
       dialogFieldTransDate= this.bindInfo().getDialogField
        (custBalanceDataContract,methodstr
         (custBalanceDataContract,parmTransDate));
       dialogFieldAllowModifyDate=
       this.bindInfo().getDialogField
        (custBalanceDataContract, methodstr
         (custBalanceDataContract,parmAllowModifyDate));

       // register override methods
       dialogFieldAllowModifyDate.registerOverrideMethod
       (methodstr(FormCheckBoxControl, modified),
       methodstr(CustBalanceUIBuilder,
       allowModifyDateModified), this);
       dialogFieldTransDate.enabled
       (any2enum(dialogFieldAllowModifyDate.value()));
    }
}

Here, we override the postBuild method and get the two dialog fields. Taking it
further, we register the allowModifyDateModified() on event modified of our
dialogFieldAllowModifyDate control.

Finally, we need to create an action menu item as an entry point to execute the
preceding code:



Working with Forms

[ 85 ]

In the VS project, create a new action menu item called1.
CustBalanceController with the following properties:

Place the menu item at Accounts receivable | Customers | All Customers |2.
Customer | Balance | Display balance, as shown in the following screenshot:



Working with Forms

[ 86 ]

Finally, our customer form will look as follows:3.

The final output will look as follows:4.



Working with Forms

[ 87 ]

Building a dynamic form
A standard approach to creating forms in Dynamics 365 for Finance and Operations is to
build and store form objects in the AOT. It is possible to achieve a high level of complexity
using this approach. However, in a number of cases, it is necessary to have forms created
dynamically. In a standard Dynamics 365 for Finance and Operations application, we can
see that application objects, such as the Table browser form, various lookups, or dialogs,
are built dynamically. Even in Dynamics 365 for Finance and Operations, where we have a
browser-based interface, every form or dialog opens in a browser only.

In this recipe, we will create a dynamic form. In order to show how flexible the form can be,
we will replicate the layout of the existing Customer groups form located in the Accounts
receivable module. The Customers form can be opened by navigating to Accounts
receivable | Setup | Customers.

How to do it...
Carry out the following steps in order to complete this recipe:

In the AOT, create a new class called CustGroupDynamicForm with the1.
following code snippet.
We will run this class directly to get output. So, just for ease, we will write all2.
code in the main method of this class:

class CustGroupDynamicForm
{
   public static void main(Args _args)
  {
     // Object declarations
     DictTable                       dictTable;
     Form                            form;
     FormBuildDesign                 design;
     FormBuildDataSource             ds;
     FormBuildActionPaneControl      actionPane;
     FormBuildActionPaneTabControl   actionPaneTab;
     FormBuildButtonGroupControl     btngrp1;
     FormBuildButtonGroupControl     btngrp2;
     FormBuildCommandButtonControl   cmdNew;
     FormBuildCommandButtonControl   cmdDel;
     FormBuildMenuButtonControl      mbPosting;
     FormBuildFunctionButtonControl  mibPosting;
     FormBuildFunctionButtonControl  mibForecast;
     FormBuildGridControl            grid;



Working with Forms

[ 88 ]

     FormBuildGroupControl           grpBody;
     Args                            args;
     FormRun                         formRun;
     #Task

     dictTable = new DictTable(tableNum(CustGroup));

     // Use Form class to create a dynamics form and
     //use its method to set different properties.
     form = new Form();
     form.name("CustGroupDynamic");

     //Add datasource in Form
     ds = form.addDataSource(dictTable.name());
     ds.table(dictTable.id());

     //Set Design prperties
     design = form.addDesign('Design');
     design.caption("Customer groups");
     design.style(FormStyle::SimpleList);
     design.titleDatasource(ds.id());

     //Add ActionPan design controls and set their
     //properties
     actionPane = design.addControl(
     FormControlType::ActionPane, 'ActionPane');
     actionPane.style(ActionPaneStyle::Strip);
     actionPaneTab = actionPane.addControl(
     FormControlType::ActionPaneTab, 'ActionPaneTab');
     btngrp1 = actionPaneTab.addControl(
     FormControlType::ButtonGroup, 'NewDeleteGroup');
     btngrp2 = actionPaneTab.addControl(
     FormControlType::ButtonGroup, 'ButtonGroup');

     //Add CommandButton design controls and set their
     //properties

     cmdNew = btngrp1.addControl(
     FormControlType::CommandButton, 'NewButton');
     cmdNew.primary(NoYes::Yes);
     cmdNew.command(#taskNew);

     //Add CommandButton design controls and set their
     //properties

     cmdDel = btngrp1.addControl(
     FormControlType::CommandButton, 'DeleteButton');
     cmdDel.text("Delete");



Working with Forms

[ 89 ]

     cmdDel.saveRecord(NoYes::Yes);
     cmdDel.primary(NoYes::Yes);
     cmdDel.command(#taskDeleteRecord);

     //Add MenuButton design controls and set their
     //properties

     mbPosting = btngrp2.addControl(
     FormControlType::MenuButton, 'MenuButtonPosting');
     mbPosting.helpText("Set up related data for the group.");
     mbPosting.text("Setup");

     mibPosting = mbPosting.addControl(
     FormControlType::MenuFunctionButton, 'Posting');
     mibPosting.text('Item posting');
     mibPosting.saveRecord(NoYes::No);
     mibPosting.dataSource(ds.id());
     mibPosting.menuItemName
     (menuitemDisplayStr(InventPosting));

     mibForecast = btngrp2.addControl(
     FormControlType::MenuFunctionButton, 'SalesForecast');
     mibForecast.text('Forecast');
     mibForecast.saveRecord(NoYes::No);
     mibForecast.menuItemName(
     menuitemDisplayStr(ForecastSalesGroup));

     //Add Grid design controls and set their
     //properties

     grpBody = design.addControl(FormControlType::Group,
'Body');
     grpBody.heightMode(FormHeight::ColumnHeight);
     grpBody.columnspace(0);
     grpBody.style(GroupStyle::BorderlessGridContainer);

     grid = grpBody.addControl(FormControlType::Grid, "Grid");
     grid.dataSource(ds.name());
     grid.showRowLabels(false);
     grid.widthMode(FormWidth::ColumnWidth);
     grid.heightMode(FormHeight::ColumnHeight);

     //Add fields in Grid and set their        //properties

     grid.addDataField
     (ds.id(), fieldNum(CustGroup,CustGroup));



Working with Forms

[ 90 ]

     grid.addDataField(
     ds.id(), fieldNum(CustGroup,Name));

     grid.addDataField(
     ds.id(), fieldNum(CustGroup,PaymTermId));

     grid.addDataField(
     ds.id(), fieldnum(CustGroup,ClearingPeriod));

     grid.addDataField(
     ds.id(), fieldNum(CustGroup,BankCustPaymIdTable));

     grid.addDataField(
     ds.id(), fieldNum(CustGroup,TaxGroupId));
     args = new Args();
     args.object(form);

     formRun = classFactory.formRunClass(args);
     formRun.init();
     formRun.run();

     formRun.detach();
  }

}

In order to test the form, run the CustGroupDynamic class. Notice that the form3.
is similar to the one located in Accounts receivable, which can be obtained by
navigating to Setup | Customers | Customer groups, as shown in the following
screenshot:



Working with Forms

[ 91 ]

How it works...
We start the code by declaring variables. Note that most of the variable types begin with
FormBuild, which are a part of a set of application classes used to build dynamic forms.
Each of these types corresponds to the control types that are manually used when building
forms in the AOT.

Right after the variable declaration, we create a dictTable object based on the CustGroup
table. We will use this object several times later in the code. Then, we create a form object
and set a name by calling the following lines of code:

  form = new Form();
  form.name("CustGroupDynamic");



Working with Forms

[ 92 ]

The name of the form object is not important, as this is a dynamic form. The form should
have a data source, so we add one by calling the addDataSource() method to the form
object and by providing a previously created dictTable object, as shown here:

 ds = form.addDataSource(dictTable.name());
 ds.table(dictTable.id());

Every form has a design, so we add a new design, define its style as a simple list, and set its
title data source, as shown in the following code snippet:

    design = form.addDesign('Design');
    design.caption("Customer groups");
    design.style(FormStyle::SimpleList);
    design.titleDatasource(ds.id());

Once the design is ready, we can start adding controls from the code as if we were doing
this from the AOT. The first thing you need to do is to add a strip action pane with its
buttons:

actionPane = design.addControl(
 (FormControlType::ActionPane, 'ActionPane');
actionPane.style(ActionPaneStyle::Strip);
actionPaneTab = actionPane.addControl(
 (FormControlType::ActionPaneTab, 'ActionPaneTab');
btngrp1 = actionPaneTab.addControl(

Right after the action pane, we add an automatically expanding grid that points to the
previously mentioned data source. Just to follow best practices, we place the grid inside a
Group control:

    grpBody = design.addControl(FormControlType::Group, 'Body');
    grpBody.heightMode(FormHeight::ColumnHeight);
    grpBody.columnspace(0);
    grpBody.style(GroupStyle::BorderlessGridContainer);

    grid = grpBody.addControl(FormControlType::Grid, "Grid");
    grid.dataSource(ds.name());
    grid.showRowLabels(false);
    grid.widthMode(FormWidth::ColumnWidth);
    grid.heightMode(FormHeight::ColumnHeight);

Next, we add a number of grid controls that point to the relevant data source fields by
calling addDataField() on the grid object. The last thing is to initialize and run the form.
Here, we use the recommended approach to creating and running forms using the globally
available classFactory object.



Working with Forms

[ 93 ]

Adding a form splitter
In Dynamics 365 for Finance and Operations, complex forms consist of one or more
sections. Each section may contain grids, groups, or any other element. In order to maintain
section sizes while resizing the form, the sections are normally separated by so-called
splitters. Splitters are not special Dynamics 365 for Finance and Operations controls; they
are Group controls with their properties modified so that they look like splitters. Most of the
multisection forms in Dynamics 365 for Finance and Operations already contain splitters.

In this recipe, in order to demonstrate the usage of splitters, we will modify one of the
existing forms that does not have a splitter. We will modify the Account reconciliation
form in the Cash and bank management module. You can open this module by navigating
to Cash and bank management | Setup | Bank group. From the following screenshot, you
can see that it is not possible to control the size of each grid individually and that they are
resized automatically using a fixed radio button when resizing the form:

In this recipe, we will demonstrate the usage of splitters by improving this situation. We
will add a form splitter between two grids in the mentioned form. This will allow users to
define the sizes of both grids in order to ensure that the data is displayed optimally.



Working with Forms

[ 94 ]

How to do it...
Carry out the following steps in order to complete this recipe:

Add the BankGroup form in the AOT and, in the form's design, add a new Group1.
control right after the ActionPane control with the following properties:

Property Value

Name Top

AutoDeclaration Yes

FrameType None

Move the DetailsHeader and Tab controls into the newly created group.2.
Change the following properties of the existing DetailsHeader group:3.

Property Value

Top Auto

Height Column height

Add a new Group control immediately below the Top group with the following4.
properties:

Property Value

Name Splitter

Style SplitterVerticalContainer

AutoDeclaration Yes

Add the following line of code at the bottom of the form's class declaration:5.

     SysFormSplitter_Y formSplitter;

Add the following line of code at the bottom of the form's init() method:6.

     formSplitter = new SysFormSplitter_Y(Splitter, Top, element);



Working with Forms

[ 95 ]

Save all your code and build the solution.7.
Now, in order to test the results, navigate to Cash and bank management |8.
Setup | Bank groups. Note that, now, the form has a splitter in the middle, which
makes the form look better and allows you to resize both grids, as shown in the
following screenshot:

How it works...
Normally, a splitter has to be placed between two form groups. In this recipe, to follow this
rule, we need to adjust the BankGroup form's design. The DetailsHeader group and Tab
controls are moved to a new group called Top. We do not want this new group to be visible
to the user, so we set FrameType to None. Setting AutoDeclaration to Yes allows you to
access this object from the code. Finally, we make this group automatically expand in the
horizontal direction by setting its Width property to Column width. At this stage, the
visual form layout does not change, but now we have the upper group ready.

We change its Top behavior to Auto and make it fully expandable in the vertical direction.
The Height property of the grid inside this group also has to be changed to Column
height in order to fill all the vertical space.



Working with Forms

[ 96 ]

In the middle of these two groups, we add a splitter. The splitter is nothing but another
group which looks like a splitter. We set its Style property to
SplitterVerticalContainer, which makes this control look like a proper form splitter.

Finally, we have to declare and initialize the SysFormSplitter_Y application class, which
does the rest of the tasks.

In this way, horizontal splitters can be added to any form. Vertical splitters can also be
added to forms using a similar approach. For this, we need to use another application class
called SysFormSplitter_X.

Creating a modal form
Often, people who are not familiar with computers and software tend to get lost among
open application windows. The same can be applied to Dynamics 365 for Finance and
Operations. Frequently, a user opens a form, clicks a button to open another one, and then
goes back to the first one without closing the second form. Sometimes this happens
intentionally, sometimes not, but the result is that the second form gets hidden behind the
first one and the user starts wondering why it is not possible to close or edit the first form.

Although it is not best practice, sometimes such issues can be easily solved by making the
child form a modal window. In other words, the second form always stays on top of the
first one until it is closed. In this recipe, we will make a modal window from the Create
sales order form.

How to do it...
Carry out the following steps in order to complete this recipe:

Add the SalesCreateOrder form in the project and set its Design property:1.

Property Value

WindowType Popup



Working with Forms

[ 97 ]

In order to test it, navigate to Sales and marketing | Common | Sales orders |2.
All sales orders and start creating a new order. Notice that, now, the sales order
creation form always stays on top:



Working with Forms

[ 98 ]

How it works...
The form's design has a WindowType property, which is set to Standard by default. In
order to make a form behave as a modal window, we have to change it to Popup. Such
forms will always stay on top of the parent form.

There's more...
We already know that some of the Dynamics 365 for Finance and Operations forms are
created dynamically using the Dialog class. If we take a deeper look at the code, we will
find that the Dialog class actually creates a runtime form. This means that we can apply the
same principle--change the relevant form's design property. The following lines of code
can be added to the Dialog object and will do the job:

    dialog.dialogForm().buildDesign().windowType
      (FormWindowType::Popup);

Here, we get a reference to the form's design by first using the dialogForm() method of
the Dialog object to get a reference to the DialogForm object, and then we call
buildDesign() on the latter object. Lastly, we set the design property by calling its
windowType() method with the FormWindowType::Popup argument.

See also
The Creating dialogs using the RunBase framework recipe

Modifying multiple forms dynamically
In the standard Dynamics 365 for Finance and Operations, there is a class called
SysSetupFormRun. The class is called during the run of every form in Dynamics 365 for
Operations; therefore, it can be used to override one of the common behaviors for all
Dynamics 365 for Finance and Operations forms. For example, different form background
colors can be set for different company accounts, some controls can be hidden or added
depending on specific circumstances, and so on.

In this recipe, we will modify the SysSetupFormRun class to automatically add the About
Dynamics 365 for Operations button to every form in Dynamics 365 for Finance and
Operations.



Working with Forms

[ 99 ]

How to do it...
Carry out the following steps in order to complete this recipe:

Add a new project, name it MultipleForm, and change the model to Application1.
Platform, as shown in the following screenshot:

Add the FormRun class and create a new method with the following code snippet:2.

private void addAboutButton()
{
   FormActionPaneControl    actionPane;
   FormActionPaneTabControl actionPaneTab;
   FormCommandButtonControl cmdAbout;
   FormButtonGroupControl   btngrp;
   #define.taskAbout(259)

   actionPane = this.design().controlNum(1);
   if (!actionPane ||
      !(actionPane is FormActionPaneControl) ||
      actionPane.style() == ActionPaneStyle::Strip)
    {
      return;
    }

   actionPaneTab = actionPane.controlNum(1);



Working with Forms

[ 100 ]

   if (!actionPaneTab ||
       !(actionPaneTab is FormActionPaneTabControl))
    {
      return;
    }

   btngrp = actionPaneTab.addControl
    (FormControlType::ButtonGroup, 'ButtonGroup');
   btngrp.caption("About");

   cmdAbout = btngrp.addControl
    (FormControlType::CommandButton, 'About');
   cmdAbout.command(#taskAbout);
   cmdAbout.imageLocation
    (SysImageLocation::EmbeddedResource);
   cmdAbout.normalImage('412');
   cmdAbout.big(NoYes::Yes);
   cmdAbout.saveRecord(NoYes::No);
}

In the same class, override its run() method with the following code snippet:3.

          public void run()
          {
            this.addAboutButton();
            super();
          }

In order to test the results, open any list page; for example, go to Accounts4.
Receivable | Customers | All customers and you will notice a new button
named About Dynamics 365 for Operations in the Action pane, as shown in the
following screenshot:



Working with Forms

[ 101 ]

How it works...
The SysSetupFormRun is the application class that is called by the system every time a user
runs a form. The best place to add our custom control is in its run() method.

We use the this.design() method to get a reference to the form's design and then we
check whether the first control in the design is an action pane. We continue by adding a
new separate button group and the About Dynamics 365 for Operations command button.
Now, every form in Dynamics 365 for Finance and Operations with an action pane will
have one more button.

Storing the last form values
Dynamics 365 for Finance and Operations has a very useful feature that allows you to save
the latest user choices per user per form, report, or any other object. This feature is
implemented across a number of standard forms, reports, periodic jobs, and other objects
which require user input. When developing a new functionality for Dynamics 365 for
Finance and Operations, it is recommended that you keep it that way.



Working with Forms

[ 102 ]

In this recipe, we will demonstrate how to save the latest user selections. In order to make it
as simple as possible, we will use the existing filters on the Bank statement form, which can
be opened by navigating to Cash and bank management | Common | Bank accounts,
selecting any bank account, and then clicking on the Account reconciliation button in the
Action pane. This form contains one filter control called View, which allows you to display
bank statements based on their status. The default view of this form is Unreconciled. We
will see how to use the below code to save user selections for future purposes.

How to do it...
Carry out the following steps in order to complete this recipe:

In the AOT, find the BankAccountStatement form and add the following code1.
snippet to the bottom of its class declaration:

        AllNotReconciled showAllReconciled;
        #define.CurrentVersion(1)
        #localmacro.CurrentList
        showAllReconciled
        #endmacro

Add the following additional form methods:2.

public void initParmDefault()
{
 showAllReconciled = AllNotReconciled::NotReconciled;
}

public container pack()
{
  return [#CurrentVersion, #CurrentList];
}

public boolean unpack(container _packedClass)
{
  int version = RunBase::getVersion(_packedClass);

    switch (version)
    {
      case #CurrentVersion:
      [version, #CurrentList] = _packedClass;
      return true;
      default:
      return false;
    }



Working with Forms

[ 103 ]

    return false;
}

public IdentifierName lastValueDesignName()
{
  return element.args().menuItemName();
}

public IdentifierName lastValueElementName()
{
  return this.name();
}

public UtilElementType lastValueType()
{
  return UtilElementType::Form;
}

public UserId lastValueUserId()
{
  return curUserId();
}

public DataAreaId lastValueDataAreaId()
{
  return curext();
}

Override the form's run() method and add the following lines of code right3.
before its super() method:

        xSysLastValue::getLast(this);
        AllReconciled.selection(showAllReconciled);

Override the form's close() method and add the following lines of code at the4.
bottom of this method:

        showAllReconciled = AllReconciled.selection();
        xSysLastValue::saveLast(this);

Finally, delete the following line of code from the init() method of the5.
BankAccountStatement data source:

        allReconciled.selection(1);



Working with Forms

[ 104 ]

Now, to test the form, navigate to Cash and bank management | Common |6.
Bank accounts, select any bank account, click on Account reconciliation, change
the filter's value, close the form, and then open it again. The latest selection
should remain, as shown in the following screenshot:

How it works...
First, we define a variable that will store the value of the filter control. The #CurrentList
macro is used to define a list of variables that we are going to save in the usage data.
Currently, we have our single variable inside it.

The #CurrentVersion macro defines a version of the saved values. In other words, it says
that the variables defined by the #CurrentList macro, which will be stored in the system
usage data, can be addressed using the number 1.

Normally, when implementing the last value saved for the first time for a particular object,
#CurrentVersion is set to 1. Later on, if you decide to add new values or change the
existing ones, you have to change the value of #CurrentVersion, normally increasing it by
one. This ensures that the system addresses the correct list of variables in the usage.

The initParmDefault() method specifies the default values if nothing is found in the
usage data. Normally, this happens if we run a form for the first time, we change
#CurrentVersion, or we clear the usage data. This method is called automatically by the
xSysLastValue class.



Working with Forms

[ 105 ]

The pack() and unpack() methods are responsible for formatting a storage container from
the variables and extracting variables from a storage container, respectively. In our case,
pack() returns a container consisting of two values: version number and statement status.
These values will be sent to the system usage data storage after the form is closed. When the
form is opened, the xSysLastValue class uses unpack() to extract values from the stored
container. It checks whether the container version in the usage data matches the current
version number defined by #CurrentVersion, and only then the values are considered
correct and assigned to the form's variables.

The return values of lastValueDesignName(), lastValueElementName(),
lastValueType(), lastValueUserId(), and lastValueDataAreaId() represent a
unique combination that is used to identify the stored usage data. This ensures that
different users can store the last values of different objects in different companies without
overriding each other's values.

The lastValueDesignName() method is meant to return the name of the object's current
design in cases where the object can have several designs. In this recipe, there is only one
design, so instead of leaving it empty, we used it for a slightly different purpose. The
method returns the name of the menu item used to open this form. In this case, separate
usage datasets will be stored for each menu item that opens the same form.

The last two pieces of code need to be added to the form's run() and close() methods. In
the run() method, xSysLastValue::getLast(this) retrieves the saved user values
from the usage data and assigns them to the form's variables.

Finally, the code in the close() method is responsible for assigning user selections to the
variables and saving them to the usage data by calling
xSysLastValue::saveLast(this).

Using a tree control
Frequent users will notice that some of the Dynamics 365 for Finance and Operations forms
use tree controls instead of the commonly used grids. In some cases, this is extremely
useful, especially when there are parent-child relationships among records. It is a much
clearer way to show the whole hierarchy, as compared to a flat list. For example, product
categories are organized as a hierarchy and give a much better overview when displayed in
a tree layout.



Working with Forms

[ 106 ]

This recipe will discuss the principles of how to build tree-based forms. As an example, we
will use the Budget model form, which can be found by navigating to Budgeting | Setup |
Basic Budgeting | Budget models. This form contains a list of budget models and their
submodels and, although the data is organized using a parent-child structure, it is still
displayed as a grid. In this recipe, in order to demonstrate the usage of the Tree control, we
will replace the grid with a new Tree control.

How to do it...
Carry out the following steps in order to complete this recipe:

Add a new project in your solution in Visual Studio. Add a new class called1.
BudgetModelTree with the following code snippet:

public class BudgetModelTree
{
  FormTreeControl tree;
  BudgetModelId   modelId;
}

public void new(
  FormTreeControl _formTreeControl,
  BudgetModelId   _budgetModelId)
{
  tree    = _formTreeControl;
  modelId = _budgetModelId;
}

public static BudgetModelTree construct(
    FormTreeControl _formTreeControl,
    BudgetModelId   _budgetModelId = '')
{
   return new BudgetModelTree(
    _formTreeControl,
     _budgetModelId);
}

private TreeItemIdx createNode(
   TreeItemIdx   _parentIdx,
   BudgetModelId _modelId,
   RecId         _recId)
{
  TreeItemIdx itemIdx;
  BudgetModel model;
  BudgetModel submodel;



Working with Forms

[ 107 ]

  model = BudgetModel::find(HeadingSub::Heading,
   _modelId);

  itemIdx = SysFormTreeControl::addTreeItem(
  tree,
  _modelId + ' : ' + model.Txt,
  _parentIdx,
  _recId,
   0,
   true);
   if (modelId == _modelId)
    {
      tree.select(itemIdx);
    }
    while select submodel
    where submodel.ModelId == _modelId &&
    submodel.Type    == HeadingSub::SubModel
    {
      this.createNode(
      itemIdx,
      submodel.SubModelId,
      submodel.RecId);
    }
    return itemIdx;
}

public void buildTree()
{
  BudgetModel model;
  BudgetModel submodel;
  TreeItemIdx itemIdx;

  tree.deleteAll();
  tree.lock();
  while select RecId, ModelId from model
  where model.Type == HeadingSub::Heading
  notExists join submodel
  where submodel.SubModelId == model.ModelId &&
  submodel.Type       == HeadingSub::SubModel
    {
      itemIdx = this.createNode(
      FormTreeAdd::Root,
      model.ModelId,
      model.RecId);
      SysFormTreeControl::expandTree(tree, itemIdx);
    }
    tree.unLock(true);
}



Working with Forms

[ 108 ]

In the AOT, open the BudgetModel form's design, expand the Body group, then2.
expand the GridContainer group and change the following property of the
BudgetModel grid control:

Property Value

Visible No

Create a new Tree control right below the BudgetModel grid with these3.
properties, as shown in the following table along with their values:

Property Value

Name Tree

Width Column width

Height Column height

Border Single line

RowSelect Yes

AutoDeclartion Yes

Add the following line of code to the bottom of the form's class declaration:4.

        BudgetModelTree modelTree;

Add the following lines of code at the bottom of the form's init() method:5.

        modelTree = BudgetModelTree::construct(Tree);
        modelTree.buildTree();

Override selectionChanged() on the Tree control with the following code6.
snippet:

public void selectionChanged(
    FormTreeItem   _oldItem,
    FormTreeItem   _newItem,
    FormTreeSelect _how)
{
  BudgetModel   model;
  BudgetModelId modelId;

    super(_oldItem, _newItem, _how);



Working with Forms

[ 109 ]

    if (_newItem.data())
    {
      select firstOnly model
      where model.RecId == _newItem.data();
        if (model.Type == HeadingSub::SubModel)
        {
          modelId = model.SubModelId;
          select firstOnly model
          where model.ModelId == modelId
          && model.Type    ==  HeadingSub::Heading;
        }
        BudgetModel_ds.findRecord(model);
        BudgetModel_ds.refresh();
    }

}

Override the delete() method on the BudgetModel data source with the7.
following code snippet:

        public void delete()
        {
          super();

            if (BudgetModel.RecId)
            {
              modelTree.buildTree();
            }
        }

Add the following line of code at the bottom of the write() method on the8.
BudgetModel data source:

          modelTree.buildTree();

Override the delete() method on the SubModel data source with the following9.
code snippet:

public void delete()
{
  super();

    if (SubModel.RecId)
    {
      modelTree.buildTree();
    }
}



Working with Forms

[ 110 ]

Override the write() method on the SubModel data source and add the10.
following line of code at the bottom:

        modelTree.buildTree();

Save all your code and build your solution.11.
In Visual Studio, the BudgetModel design should look like the following12.
screenshot:

To test the Tree control, navigate to Budgeting | Setup | Basic budgeting |13.
Budget models. Notice how the budget models are presented as a hierarchy, as
shown here:



Working with Forms

[ 111 ]

How it works...
This recipe contains a lot of code, so we create a class to hold most of it. This allows you to
reuse the code and keep the form less cluttered.

The new class contains a few common methods, such as new() and construct(), for
initializing the class, and two methods which actually generate the tree.

The first method is createNode() and is used to create a single budget model node with
its children, if any. It is a recursive method, and it calls itself to generate the children of the
current node. It accepts a parent node and a budget model as arguments. In this method, we
create the node by calling the addTreeItem() method of the SysFormTreeControl class.
The rest of the code loops through all the submodels and creates subnodes (if there are any)
for each of them.

Second, we create buildTree(), where the whole tree is created. Before we actually start
building it, we delete all the existing nodes (if any) in the tree and then lock the Tree
control to make sure that the user cannot modify it while it's being built. Then, we add
nodes by looping through all the parent budget models and calling the previously
mentioned createNode(). We call the expandTree() method of the
SysFormTreeControl class in order to display every parent budget model that was
initially expanded. Once the hierarchy is ready, we unlock the Tree control.



Working with Forms

[ 112 ]

Next, we modify the BudgetModel form by hiding the existing grid section and adding a
new tree control. Tree nodes are always generated from the code and the previously
mentioned class will do exactly that. On the form, we declare and initialize the modelTree
object and build the tree in the form's init() method.

In order to ensure that the currently selected tree node is displayed on the form on the
right-hand side, we override the tree control's selectionChanged() event, which is
triggered every time a tree node is selected. Here, we locate a corresponding record and
place a cursor on that record.

The rest of the code on the form is to ensure that the tree is rebuilt whenever the data is
modified.

See also
The Preloading images recipe in Chapter 3, Working with Data in Forms
The Building a tree lookup recipe in Chapter 4, Building Lookups

Adding the View details link
Dynamics 365 for Finance and Operations has a very useful feature that allows the user to
open the main record form with just a few mouse clicks on the current form. The feature is
called View details and is available in the right-click context menu on some controls. It is
based on table relationships and is available for those controls whose data fields have
foreign key relationships with other tables.

Because of the data structure's integrity, the View details feature works most of the time.
However, when it comes to complex table relations, it does not work correctly or does not
work at all. Another example of when this feature does not work automatically is when the
display or edit methods are used on a form. In these and many other cases, the View
details feature has to be implemented manually.

In this recipe, to demonstrate how it works, we will modify the General journal form in the
General ledger module and add the View details feature to the Description control,
allowing users to jump from the right-click context menu to the Journal names form.



Working with Forms

[ 113 ]

How to do it...
Carry out the following steps in order to complete this recipe:

Add the LedgerJournalTable form to your project, expand its data sources,1.
and override jumpRef() of the Name field on the LedgerJournalTable data
source with the following code snippet:

public void jumpRef()
{
  LedgerJournalName   name;
  Args                args;
  MenuFunction        mf;

  name = LedgerJournalName::find
   (LedgerJournalTable.JournalName);

  if (!name)
  {
    return;
  }

  args = new Args();
  args.caller(element);
  args.record(name);

  mf = new MenuFunction
  (menuitemDisplayStr(LedgerJournalSetup),
  MenuItemType::Display);
  mf.run(args);
}

Save all your code and build your solution.2.



Working with Forms

[ 114 ]

Navigate to General ledger | Journals Entries | General journal, select any of3.
the existing records, and right-click on the Description column. Notice that the
View details option, which will open the Journal names form, is available now,
as shown here:

You may need to refresh your Dynamics 365 for Operations page to reflect your
changes in the frontend.

When you click on View details, the below form should open:4.



Working with Forms

[ 115 ]

How it works...
Normally, the View details feature is controlled by the relationships between the
underlying tables. If there are no relationships or the form control is not bound to a table
field, then this option is not available. However, we can force this option to appear by
overriding the control's jumpRef() method.

In this method, we add code that opens the relevant form. This can be done by declaring,
instantiating, and running a FormRun object, but an easier way to do this is to simply run
the relevant menu item from the code. In this recipe, the code in jumpRef() does exactly
that.

In the code, first we check whether a valid journal name record is found. If so, we run the
LedgerJournalSetup menu item with an Args object that holds the journal name record
and the current form object information as a caller. The rest is done automatically by the
system, that is, the Journal names form is opened with the currently selected journal name.



Working with Forms

[ 116 ]

Selecting a form pattern
In the latest version of Dynamics 365 for Finance and Operations, form patterns are now an
integrated part of the form development experience. These patterns provide form structure
based on a particular style (including required and optional controls), and also provide
many default control properties. In addition to top-level form patterns, Dynamics 365 for
Operations has also introduced subpatterns which can be applied to container controls, and
that provide guidance and consistency for subcontent on a form, such as, on a Fast Tab.

Form patterns have made form development easier in Dynamics 365 for Finance and
Operations by providing a guided experience for applying patterns to forms to guarantee
that they are correct and consistent. Patterns help validate form and control structures, and
also the use of controls in some places. Patterns also help guarantee that each new form that
a user encounters is immediately recognizable in appearance and function. Form patterns
can provide many default control properties, and these also contribute to a more guided
development experience. Because patterns provide many default layout properties, they
help guarantee that forms have a responsive layout. Finally, patterns also help guarantee
better compatibility with upgrades.

Many of the existing form styles and templates from AX 2012 continue to be supported in
the current version Dynamics 365 for Finance and Operations. However, legacy form styles
and templates that aren't supported have a migration path to a Dynamics 365 for Finance
and Operations pattern. Because the foundational elements of Dynamics 365 for Finance
and Operations are built based on those legacy form styles and patterns, the transition from
AX 2012 to the current version of Dynamics 365 for Finance and Operations is as easy as
possible.

The selection of a form pattern is an important step in the process of migrating a form. A
pattern that is a good fit for the target form reduces the amount of migration work that is
required. Therefore, some investigation is required to select the best form pattern for the
form that you're migrating.

How to do it
Applying a pattern is a straightforward process that can modify properties on multiple
containers and controls on a form. Here is the standard flow for applying patterns:

Identify a target form and add it to your project. Then, in Visual Studio, open1.
Application Explorer, and find the form. Right-click the form, and then select
Add to project. When you open the form in the designer, it should have the
Pattern: <unselected> designation on the design node.



Working with Forms

[ 117 ]

Decide which pattern to apply. You can refer to the exported details file in the last2.
recipe.
Now we need to apply the pattern. Right-click the Design node of the target3.
form, select Apply pattern, and then click the Pattern to apply.
As a last step, we may need to handle a few errors. Information about the pattern4.
appears on the Pattern tab. To learn about the pattern structure, click control
names on the Pattern tab to navigate the pattern structure.
Double-click an error to go to the control that the error was reported for, if the5.
control exists.
If the control already exists on the form but is in a different place, move the6.
control to the correct place, as indicated by the pattern.
If the control doesn't exist, create the control.7.

Full list of form patterns
In the current version of Dynamics 365 for Finance and Operations, there are a total of five
form patterns that we use the most:

Details Master
Form Part - Fact Boxes
Simple List
Table of Contents
Operational workspaces

For a full list of the forms that are currently using a particular form pattern, generate the
Form Patterns report from within Microsoft Visual Studio. On the Dynamics 365 menu,
expand the Add-ins option, and click Run form patterns report. A background process
generates the report. After several seconds, a message box appears in Visual Studio to
indicate that the report has been generated and inform you about the location of the Form
Patterns report file. You can filter this file by pattern to find forms that use a particular
pattern.



Working with Forms

[ 118 ]

How to do it...
We're going to look at how to run the form patterns report. This report is generated through
Visual Studio and gives us information about all of the forms in the system with the
corresponding form patterns:

Open VS as admin and go to the Dynamics 365 menu.1.
Select Add ins | Run form patterns report:2.

This will generate a CSV file that we can open in Excel.3.



Working with Forms

[ 119 ]

Open the Excel file and you'll notice that, we have columns that tell us which4.
model the form is in, the system name for the form, as well as the form style and
the form pattern:



Working with Forms

[ 120 ]

In this CSV file, we will also get details about the controls and the coverage5.
percentage. Filter helps to determine which system form has which pattern
applied, and also which forms do not have any pattern applied. The following are
all form patterns in Dynamics 365 for Operations:

Apply your filter as per your requirements and see the results.



Working with Forms

[ 121 ]

Creating a new form
In Dynamics 365 for Finance and Operations, form creations are slightly easier than in
AX2012 and earlier versions. Here, we have more tools to create any specific form using
design templates. Every form plays an important role where we need to interact with the
user to view, insert, update, or delete any record(s).

In this recipe, we will create a simple form using a template and add this form to one of the
menus so that users can access it from the front end.

Getting ready
Let's think about a scenario where the admin needs to check all existing users in the system.
Although we have one standard form for this, we cannot give access to everyone because
this form also has many other options to perform on this form, while our requirement is to
just see read only data. We will use this form in further recipes to justify the name of this
form. Here, it will show all enabled and disabled users.

How to do it...
Add a new form in your project name it PktDisabledUsers.1.
Expand the Data Sources node and add the UserInfo table in it:2.



Working with Forms

[ 122 ]

Set the following properties on Data source:3.

Go to Design, right click on Apply Pattern, and select Simple List. This will4.
create the respective pattern for you:

You have to add all those elements in design the section in the same order.5.



Working with Forms

[ 123 ]

Add all the missing objects such as ActionPane, Group, and a Grid.6.
Now, you have to select a pattern for CustomFilter group; select Custom and7.
Quick Filters.
You will see another pattern available for this; add all missing objects to this8.
group:

Your form design should look like this:9.



Working with Forms

[ 124 ]

Now, let's add some fields in your grid to show actual data. Add fields from10.
UserInfo Data source:

Give a caption to your design, such as Disabled users with color. We will11.
use this form in further recipes to justify its name:

Now, to add this form to the front end, create a Display Menu Item for this12.
form.



Working with Forms

[ 125 ]

Create an extension of SystemAdminstration menu and add this new display13.
menu item under Users, as in the following screenshot:

To test this form, save all your changes and build the solution. Now, go to14.
System administrator| Users |Disabled users with color. Your form should look
like the following screenshot:



Working with Forms

[ 126 ]

How it works...
Creating a new form in Dynamics 365 for Finance and Operations is very systematic and
easy. All you need to do is identify the purpose of the form and choose a relevant pattern.
Once you apply a pattern to your form, it will show the required object details with a
sequence, as shown in step 4 in the above recipe. All you need to add now are the respective
objects in your design with the given sequence.



3
Working with Data in Forms

In this chapter, we will cover the following recipes:

Using a number sequence handler
Creating a custom filter control
Creating a custom instant search filter
Building a selected/available list
Creating a wizard
Processing multiple records
Coloring records
Adding an image to records

Introduction
This chapter basically supplements the previous one and explains data organization in
forms in the new Dynamics 365 for Finance and Operations. It shows how to add custom
filters to forms to allow users to filter data and create record lists for quick data
manipulation.

This chapter also discusses how the displaying of data can be enhanced by adding icons to
record lists and trees, and how normal images can be stored along with the data by reusing
the existing Dynamics 365 for Finance and Operations application objects.

A couple of recipes will show you how to create wizards in the new Dynamics 365 for
Finance and Operations to guide users through complex tasks. This chapter will also show
several approaches to capturing user-selected records on forms for further processing, and
ways to distinguish specific records by coloring them.



Working with Data in Forms

[ 128 ]

Using a number sequence handler
As already discussed in the Creating a new number sequence recipe in Chapter 1, Processing
Data, number sequences are widely used throughout the system as a part of the standard
application. Dynamics 365 for Finance and Operations also provides a special number
sequence handler class to be used in forms. It is called NumberSeqFormHandler and its
purpose is to simplify the usage of record numbering on the user interface. Some of the
standard Dynamics 365 for Finance and Operations forms, such as Customers or Vendors,
already have this feature implemented.

This recipe shows you how to use the number sequence handler class. Although in this
demonstration we will use an existing form, the same approach will be applied when
creating brand new forms.

For demonstration purposes, we will use the existing Customer groups form located in
Accounts receivable | Setup | Customers and change the Customer group field from
manual to automatic numbering. We will use the number sequence created earlier, in the
Creating a new number sequence recipe in Chapter 1, Processing Data.

How to do it...
Carry out the following steps in order to complete this recipe:

Create a new project, UsingNumberSeqhandler, create a new extension class1.
CustGroup_Extension for the CustGroup form, and add the following code
snippet to its class declaration:

        public NumberSeqFormHandler numberSeqFormHandler;

Also, create a new method called numberSeqFormHandler() in the same class:2.

        public NumberSeqFormHandler numberSeqFormHandler()
       {
          if (!numberSeqFormHandler)
        {
           numberSeqFormHandler = NumberSeqFormHandler::newForm(
           CustParameters::numRefCustGroupId().NumberSequenceId,
           this,this.CustGroup_ds,fieldNum(CustGroup,CustGroup));
        }
          return numberSeqFormHandler;
       }



Working with Data in Forms

[ 129 ]

To override the CustGroup data source's create() method, copy the3.
OnCreating and OnCreated events from the data source and paste them in the
class CustGroup_Extension with the following code snippet:

        [FormDataSourceEventHandler(formDataSourceStr(CustGroup,
        CustGroup), FormDataSourceEventType::Creating)]
        public void CustGroup_OnCreating(FormDataSource sender,
        FormDataSourceEventArgs e)
        {
           this.numberSeqFormHandler().formMethodDataSourceCreatePre();
        }

        [FormDataSourceEventHandler(formDataSourceStr(CustGroup,
        CustGroup), FormDataSourceEventType::Created)]
        public void CustGroup_OnCreated(FormDataSource sender,
        FormDataSourceEventArgs e)
        {
           this.numberSeqFormHandler().formMethodDataSourceCreate();
        }

Then, to override its delete() method, subscribe to the OnDeleting event of4.
the CustGroup data source and paste it in the extension class with the
following code snippet:

        [FormDataSourceEventHandler(formDataSourceStr(CustGroup,
        CustGroup), FormDataSourceEventType::Deleting)]
        public void CustGroup_OnDeleting(FormDataSource sender,
        FormDataSourceEventArgs e)
        {
           this.numberSeqFormHandler().formMethodDataSourceDelete();
        }

Then, to override the data source's write() method, subscribe to the OnWritten5.
event with the following code snippet:

   [FormDataSourceEventHandler(formDataSourceStr(CustGroup,
   CustGroup), FormDataSourceEventType::Written)]
   public void CustGroup_OnWritten(FormDataSource sender,
   FormDataSourceEventArgs e)
  {
     this.numberSeqFormHandler().formMethodDataSourceWrite();
  }



Working with Data in Forms

[ 130 ]

Similarly, to override its validateWrite() method, subscribe to the6.
OnValidatedWrite event of the CustGroup data source with the following code
snippet:

   [FormDataSourceEventHandler(formDataSourceStr(CustGroup,
    CustGroup), FormDataSourceEventType::ValidatedWrite)]
   public void CustGroup_OnValidatedWrite(FormDataSource sender,
    FormDataSourceEventArgs e)
   {
     boolean ret = true;
     ret =
     this.numberSeqFormHandler().formMethodDataSourceValidateWrite
     (ret);

   }

For the same data source, to override its linkActive() method, subscribe to7.
OnLinkActive with the following code snippet:

      [FormDataSourceEventHandler(formDataSourceStr(CustGroup,
       CustGroup), FormDataSourceEventType::PostLinkActive)]
       public void CustGroup_OnLinkActive(FormDataSource sender,
        FormDataSourceEventArgs e)
      {
         this.numberSeqFormHandler()
         .formMethodDataSourceLinkActive();
      }

Finally, to override the form's close() method, subscribe to the OnClosing8.
event of the form with the following code snippet:

        [FormEventHandler(formstr(CustGroup), FormEventType::Closing)]
         public void CustGroup_OnClosing(xFormRun formRun,
         FormEventArgs e)
        {
          if (numberSeqFormHandler)
         {
             numberSeqFormHandler.formMethodClose();
         }
        }

In order to test the numbering, navigate to Accounts receivable | Setup |9.
Customers | Customer groups and try to create several new records--the
Customer group value will be generated automatically:



Working with Data in Forms

[ 131 ]

How it works...
First, we declare an object of type NumberSeqFormHandler in the form's class declaration.
Then, we create a new corresponding form method called numberSeqFormHandler(),
which instantiates the object if it has not been instantiated yet and returns it. This method
allows us to hold the handler creation code in one place and reuse it many times within the
form.

In this method, we use the newForm() constructor of the NumberSeqFormHandler class to
create the numberSeqFormHandler object. It accepts the following arguments:

The number sequence code, which was created in the Creating a new number sequence recipe
in Chapter 1, Processing Data, ensures the proper format of the customer group numbering.
Here, we call the numRefCustGroupId() helper method from the CustParameters table
to find which number sequence code will be used when creating new customer group
records:

The FormRun object, which represents the form itself
The form data source, where we need to apply the number sequence handler
The field number of the field into which the number sequence will be populated



Working with Data in Forms

[ 132 ]

Finally, we add the various NumberSeqFormHandler methods to the corresponding events
methods on the form's data source to ensure proper handling of the numbering when
various events are triggered.

You may need to refresh your browser to see your changes.

See also
The Creating a new number sequence recipe in Chapter 1, Processing Data

Creating a custom filter control
Filtering forms in Dynamics 365 for Finance and Operations is implemented in a variety of
ways. As part of the standard application, Dynamics 365 for Finance and Operations
provides various filtering options, such as Filter by Selection, Filter by Grid, or Advanced
Filter/Sort located in the toolbar, which allow you to modify the underlying query of the
currently displayed form. In addition to the standard filters, the Dynamics 365 for Finance
and Operations list pages normally allow quick filtering on most commonly used fields.
Besides that, some of the existing forms have even more advanced filtering options, which
allow users to quickly define complex search criteria.

Although the latter option needs additional programming, it is more user-friendly than
standard filtering and is a very common request in most of the Dynamics 365 for Finance
and Operations implementations.

In this recipe, we will learn how to add custom filters to a form. We will use the Main
accounts form as a basis and add a few custom filters, which will allow users to search for
accounts based on their name and type.



Working with Data in Forms

[ 133 ]

How to do it...
Carry out the following steps in order to complete this recipe:

In the AOT, locate the MainAccount form and select the option to create1.
extension of it in a new project. Open the form and select the design under the
NavigationList control and add a new group control with the following
properties:

Property Value

Name Filter

AutoDeclaration Yes

Move this group below TreeFilter and add a new String control with the2.
following properties:

Property Value

Name FilterName

AutoDeclaration Yes

ExtendedDataType AccountName

Add a new ComboBox control to the same group with the following properties:3.

Property Value

Name FilterType

AutoDeclaration Yes

EnumType DimensionLedgerAccountType

Selection 10



Working with Data in Forms

[ 134 ]

Create a new extension class, MainAccountForm_Extension , subscribe an4.
OnModified event of the newly created controls, and add the following code
snippet in the extension class:

            [ExtensionOf(formstr(MainAccount))]
            final class MainAccountForm_Extension
         {
            [FormControlEventHandler(formControlStr(MainAccount,
            FilterName), FormControlEventType::Modified)]
            public void FilterName_OnModified(FormControl sender,
            FormControlEventArgs e)
         {
            FormDataSource  mainAccount_ds =
            sender.formRun().dataSource(formdatasourcestr(MainAccount,
            MainAccount));
            mainAccount_ds.executeQuery();
         }

            [FormControlEventHandler(formControlStr(MainAccount,
            FilterType), FormControlEventType::Modified)]
            public void FilterType_OnModified(FormControl sender,
            FormControlEventArgs e)
         {
            FormDataSource  mainAccount_ds =
            sender.formRun().dataSource(formdatasourcestr(MainAccount,
            MainAccount));
            mainAccount_ds.executeQuery();
         }
        }

After all modifications, in the AOT, the MainAccount.Extension1 form will5.
look similar to the following screenshot:



Working with Data in Forms

[ 135 ]

In the same extension class, subscribe to the OnQueryExecuting and6.
OnQueryExecuted events to override the executeQuery() method of the
MainAccount data source, and then add the following code snippet in the
extension class:

[FormDataSourceEventHandler(formDataSourceStr(MainAccount,
MainAccount), FormDataSourceEventType::QueryExecuting)]
public void MainAccount_OnQueryExecuting(FormDataSource
sender, FormDataSourceEventArgs e)
 {
    QueryBuildRange qbrName;
    QueryBuildRange qbrType;
    QueryBuildDataSource qbds =
    sender.query().dataSourceTable(tableNum(MainAccount));

    MainAccount::updateBalances();

    qbrName = SysQuery::findOrCreateRange(
    qbds,fieldNum(MainAccount,Name));

    qbrType = SysQuery::findOrCreateRange(
    qbds,fieldNum(MainAccount,Type));

     str filterText =
     this.design().controlName("FilterName").valueStr();
     if (filterText)
     {
        qbrName.value(SysQuery::valueLike(
        filterText));
     }
     else



Working with Data in Forms

[ 136 ]

     {
        qbrName.value(SysQuery::valueUnlimited());
     }
     if (FilterType.selection() ==
         DimensionLedgerAccountType::Blank)
     {
        qbrType.value(SysQuery::valueUnlimited());
     }
     else
     {
        qbrType.value(queryValue(FilterType.selection()));
      }

 }

[FormDataSourceEventHandler(formDataSourceStr(MainAccount,
MainAccount), FormDataSourceEventType::QueryExecuted)]  public
void MainAccount_OnQueryExecuted(FormDataSource
sender, FormDataSourceEventArgs e)
{
   this.createTree();
}

In order to test the filter, navigate to General ledger | Common | Main accounts
and change the values in the newly created filters--the account list will change,
reflecting the selected criteria:



Working with Data in Forms

[ 137 ]

How it works...
We start by adding an empty Filter group control to make sure all our controls are placed
from the left to the right in one line.

Next, we add two controls that represent the Account name and Main account type filters
and enable them to be automatically declared for later usage in the code. We also subscribe
their OnModified() event methods to ensure that the MainAccount data source's query is
re-executed whenever the controls' values change.

Finally, we subscribe to OnQueryExecuting and OnQueryExecuted events on the
MainAccount data source to override the function of the executeQuery() method. The
code uses two event handlers, to apply the ranges before super() of executeQuery() and
createTree() after the super().OnQueryExecuting event make sure the query is
modified before fetching the data.

Here, we declare and create two new QueryBuildRange objects, which represent the
ranges on the query. We use the findOrCreateRange() method of the SysQuery
application class to get the range object. This method is very useful and important, as it
allows you to reuse previously created ranges.

Next, we set the ranges' values. If the filter controls are blank, we use the
valueUnlimited() method of the SysQuery application class to clear the ranges. If the
user types some text into the filter controls, we pass those values to the query ranges. The
global queryValue() function--which is actually a shortcut to SysQuery::value()-
ensures that only safe characters are passed to the range. The SysQuery::valueLike()
method adds the * character around the account name value to make sure that the search is
done based on partial text.

Note that the SysQuery helper class is very useful when working with queries, as it does all
kinds of input data conversions to make sure they can be safely used. Here is a brief
summary of some of the SysQuery methods:

valueUnlimited(): This method returns a string representing an unlimited
query range value, that is, no range at all.
value(): This method converts an argument into a safe string. The global
queryValue() method is a shortcut for this.
valueNot(): This method converts an argument into a safe string and adds an
inversion sign in front of it.



Working with Data in Forms

[ 138 ]

See also
The Building a query object recipe in Chapter 1, Processing Data.

Creating a custom instant search filter
The standard form filters and the majority of customized form filters in Dynamics 365 for
Finance and Operations are only applied once the user presses a button or a key. This is
acceptable in most cases, especially if multiple criteria are used. However, when the result
retrieval speed and usage simplicity has priority over system performance, it is possible to
set up the search so that the record list is updated instantly when the user starts typing.

In this recipe, to demonstrate the instant search, we will modify the Vendor group form.
We will add a custom Name filter, which will update the group list automatically when the
user starts typing. We will need to overlay the Vendor group form, as the methods that we
will be using for instant search don't yet have an event listener provided by Microsoft.

How to do it...
Carry out the following steps in order to complete this recipe:

Create a new project in Visual Studio, open the VendGroup form, and add a new1.
group control Filter below QuickFilterControl to the already existing
CustomFilterGroup group control.

Property Value

Name Filter

AutoDeclaration Yes



Working with Data in Forms

[ 139 ]

Then, add a String control to the new group Filter with the following2.
properties:

Property Value

Name FilterName

AutoDeclaration Yes

ExtendedDataType Name

Override the control's textChange() method with the following code snippet:3.

        public void textChange()
       {
          super();

          VendGroup_ds.executeQuery();
       }

On the same control, override the control's enter() method with the following4.
code snippet:

        public void enter()
       {
          super();
          this.setSelection(strLen(this.text()),
          strLen(this.text()));
       }

Override the executeQuery() method of the VendGroup data source as follows:5.

        public void executeQuery()
       {
          QueryBuildRange qbrName;

          qbrName =
          SysQuery::findOrCreateRange(this.queryBuildDataSource(),
          fieldNum(VendGroup,Name));

          qbrName.value(FilterName.text() ?
           '*'+queryValue(FilterName.text())+'*' :
             SysQuery::valueUnlimited());

           super();
       }



Working with Data in Forms

[ 140 ]

In order to test the search, build your solution, navigate to Accounts payables |6.
Vendors | Vendor groups, and start typing in the Name filter. Note how the
vendor group list is being filtered automatically:

How it works...
First of all, we add a new control, which represents the Name filter. Normally, the user's
typing triggers the textChange() event method on the active control every time a
character is entered. So, we override this method and add code to re-execute the form's
query whenever a new character is typed in.

Next, we have to correct the cursor's behavior. Currently, once the user types in the first
character, the search is executed and the system moves the focus out of this control and then
moves back into the control selecting all the typed text. If the user continues typing, the
existing text will be overwritten with the new character and the loop will continue.



Working with Data in Forms

[ 141 ]

In order to go around this, we have to override the control's enter() event method. This
method is called every time the control receives a focus, whether it was done by a user's
mouse, key, or by the system. Here, we call the setSelection() method. Normally, the
purpose of this method is to mark a control's text, or a part of it, as selected. Its first
argument specifies the beginning of the selection and the second one specifies the end. In
this recipe, we use this method in a slightly different way. We pass the length of the typed
text as a first argument, which means the selection starts at the end of the text. We pass the
same value as a second argument, which means that selection ends at the end of the text. It
does not make any sense from a selection point of view, but it ensures that the cursor
always stays at the end of the typed text, allowing the user to continue typing.

The last thing to do is to add some code to the executeQuery() method to change the
query before it is executed. Modifying the query was discussed in detail in the Creating a
custom filter control recipe. The only thing to note here is that we add * to the beginning and
the end of the search string to do the search with a partial string.

Note that the system's performance might be affected, as the data search is executed every
time the user types in a character. It is not recommended to use this approach for large
tables.

See also
The Creating a custom filter control recipe

All your objects must belong to the same package, so you don't need to
create a separate project for each recipe. You can add your code/object in
your existing project/solution customization is possible only if the models
are in the same package.

Building a selected/available list
Frequent users might note that some of the Dynamics 365 for Finance and Operations forms
contain two sections placed next to each other and allow the moving of items from one side
to the other. Normally, the right section contains a list of available values and the left one
contains the values that have been chosen by the user. Buttons in the middle the allow the
moving of data from one side to another. Double-click and drag and drop mouse events are 
also supported. Such design improves the user's experience, as data manipulation becomes
more user-friendly.



Working with Data in Forms

[ 142 ]

Some of the examples in the standard application can be found at General ledger | Chart of
accounts | Dimensions | Financial dimension sets or System administration | Users |
User groups.

This functionality is based on the SysListPanelRelationTableCallBack application
class. Developers only need to create its instance with the required parameters and the rest
is done automatically.

This recipe will show the basic principles of how to create selected/available lists. We will
add an option for assigning customers to buyer groups in the Buyer groups form in the
Inventory management module.

How to do it...
Carry out the following steps in order to complete this recipe:

In the AOT, create a new table named InventBuyerGroupList. Let's not change1.
any of its properties, as this table is for demonstration only.
Add a new field to the table with the following properties (click on Yes if asked2.
to add a new relation to the table):

Property Value

Type String

Name GroupId

ExtendedDataType ItemBuyerGroupId

Add another field to the table with the following properties:3.

Property Value

Type String

Name CustAccount

ExtendedDataType CustAccount



Working with Data in Forms

[ 143 ]

In the AOT, open the InventBuyerGroup form and change its design's property4.
as follows:

Property Value

Style Auto

Add a new Tab control with the following properties to the design's bottom:5.

Property Value

Name Tab

Width mode SizeToAvailable

Height mode Column height

Add a new TabPage control with the following properties to the newly created6.
tab:

Property Value

Name BuyerGroups

Caption Buyer groups

Add another TabPage control with the following properties to the newly created7.
tab:

Property Value

Name Customers

Caption Customers



Working with Data in Forms

[ 144 ]

Move the existing Grid control into the first tab page and disable the existing8.
CustomFilterGroup group by setting its property:

Property Value

Enable No

The form will look similar to the following screenshot:9.

Add the following line to the form's class declaration:10.

         SysListPanelRelationTable sysListPanel;

Override the form's init() method with the following code snippet:11.

public void init()
{
   container columns;
   #ResAppl

   columns = [fieldNum(CustTable, AccountNum)];

   sysListPanel = SysListPanelRelationTable::newForm(
   element,
   element.controlId(
   formControlStr(InventBuyerGroup,Customers)),



Working with Data in Forms

[ 145 ]

   "Selected",
   "Available",
   #ImageCustomer,
   tableNum(InventBuyerGroupList),
   fieldNum(InventBuyerGroupList,CustAccount),
   fieldNum(InventBuyerGroupList,GroupId),
   tableNum(CustTable),
   fieldNum(CustTable,AccountNum),
   columns);

   super();

   sysListPanel.init();

}

Override the pageActivated() method on the newly created Customers tab12.
page with the following code snippet:

public void pageActivated()
{
   sysListPanel.parmRelationRangeValue(
   InventBuyerGroup.Group);

   sysListPanel.parmRelationRangeRecId(
   InventBuyerGroup.RecId);

   sysListPanel.fill();

   super();
}

In order to test the list, first, save all your code and build your solution.13.



Working with Data in Forms

[ 146 ]

Now navigate to Inventory management | Setup | Inventory | Buyer groups14.
and select any group. Then, go to the Customers tab page and use the buttons
provided to move records from one side to the other. You can also double-click or
drag and drop with your mouse:

How it works...
In this recipe, the InventBuyerGroupList table is used as a many-to-many relationship
table between the buyer groups and the customers.

In terms of form design, the only thing that needs to be added is a new tab page. The rest is
created dynamically by the SysListPanelRelationTable application class.



Working with Data in Forms

[ 147 ]

In the form's class declaration, we declare a new variable based on the
SysListPanelRelationTable class and instantiate it in the form's init() method using
its newForm() constructor. The method accepts the following parameters:

The FormRun object representing the form itself.
The name of the tab page.
The label of the left section.
The label of the right section.
The number of the image that is shown next to each record in the lists.
The relationship table number.
The field number in the relationship table representing the child record. In our
case, it is the customer account number--CustAccount.
The field number in the relationship table representing the parent table. In this
case, it is the buyer group number--GroupId.
The number of the table that is displayed in the lists.
A container of the field numbers displayed in each column.

We also have to initialize the list by calling its member method init() in the form's
init() method right after the super() method.

The list's controls are created dynamically when the Customers tab page is opened. In order
to accommodate that, we add the list's creation code to the pageActivated() event
method of the newly created tab page. In this way, we ensure that the list is populated
whenever a new buyer group is selected.

There's more...
The SysListPanelRelationTable class can only display fields from a single table.
Alternatively, there is another application class named
SysListPanelRelationTableCallback, which allows you to create more complex lists.

In order to demonstrate its capabilities, we will expand the previous example by displaying
the customer name next to the account number. The customer name is stored in another
table and can be retrieved by using the name() method on the CustTable table.



Working with Data in Forms

[ 148 ]

First, in the form's class declaration, we have to change the list declaration to the following
code line:

      SysListPanelRelationTableCallback sysListPanel;

Next, we create two new methods--one for the left list and the other one for the right list--
that generate and return data containers to be displayed in each section. The methods will
be placed on the InventBuyerGroupList table. In order to improve performance, these
methods will be executed on the server tier (note the server modifier):

static server container selectedCustomers(
ItemBuyerGroupId _groupId)
{
   container            ret;
   container            data;
   CustTable            custTable;
   InventBuyerGroupList groupList;

   while select custTable
   order by AccountNum
   exists join groupList
   where groupList.CustAccount == custTable.AccountNum
   && groupList.GroupId     == _groupId

    {
       data = [custTable.AccountNum,
       custTable.AccountNum,
       custTable.name()];

       ret += [data];
    }

      return ret;
}

    static server container availableCustomers(
    ItemBuyerGroupId _groupId)
  {
     container            ret;
     container            data;
     CustTable            custTable;
     InventBuyerGroupList groupList;

     while select custTable
     order by AccountNum
     notExists join firstOnly groupList
     where groupList.CustAccount == custTable.AccountNum



Working with Data in Forms

[ 149 ]

     && groupList.GroupId     == _groupId
    {
       data = [custTable.AccountNum, custTable.AccountNum,
       custTable.name()];

       ret += [data];
    }

       return ret;
  }

Each of the methods returns a container of containers. The outer container holds all the
items in the list. The inner container represents one item in the section and it contains three
elements--the first is the identification number of the element and the next two are
displayed on the screen.

Next, we create two new methods with the same names on the InventBuyerGroup form
itself. These methods are required to be present on the form by the
SysListPanelRelationTableCallback class. These methods are nothing but wrappers
to the previously created methods:

private container selectedCustomers()
{
   return InventBuyerGroupList::selectedCustomers(
   InventBuyerGroup.Group);
}

private container availableCustomers()
{
   return InventBuyerGroupList::availableCustomers(
   InventBuyerGroup.Group);
}

In this way, we reduce the number of calls between the client and server tiers while
generating the lists.

Finally, we replace the form's init() method with the following code snippet:

public void init()
{
    container columns;
    #ResAppl

    columns = [0, 0];

    sysListPanel = SysListPanelRelationTableCallback::newForm(
    element,element.controlId(



Working with Data in Forms

[ 150 ]

    formControlStr(InventBuyerGroup,Customers)),
    "Selected",
    "Available",
    #ImageCustomer,
    tableNum(InventBuyerGroupList),
    fieldNum(InventBuyerGroupList,CustAccount),
    fieldNum(InventBuyerGroupList,GroupId),
    tableNum(CustTable),
    fieldNum(CustTable,AccountNum),
    columns,
    0,
    '',
    '',
    identifierStr(selectedCustomers),
    identifierStr(availableCustomers));

    super();

    sysListPanel.init();

}

This time, we used the newForm() constructor of the
SysListPanelRelationTableCallback class, which is very similar to the previous one,
but accepts the names of methods as arguments, which will be used to populate the data in
the right and left sections.

Note that the columns container that previously held a list of fields now contains two zeros.
By doing that, we simply define that there will be two columns in each list. Since the lists
are actually generated outside the SysListPanelRelationTableCallback class, we do
not need to specify the field numbers of the columns anymore.

Now, when you run the Buyer groups form, both sections contain a customer name
column:



Working with Data in Forms

[ 151 ]

Creating a wizard
Wizards in Dynamics 365 for Finance and Operations are used to help a user to perform a
specific task. An example of a standard Dynamics 365 for Finance and Operations wizards
is the Number Sequence Wizard.

Normally, a wizard is presented to a user as a form with a series of steps. During the wizard
run, all the user's inputs are collected and committed to the database. Then, the user presses
the Finish button on the last wizard page.

In this recipe, we will create a new wizard to create main accounts. First, we will use the
standard Dynamics 365 for Finance and Operations wizard to create a framework, and then
we will add some additional controls manually.



Working with Data in Forms

[ 152 ]

How to do it...
Carry out the following steps in order to complete this recipe:

In the Development Workspace, create a new Dynamics 365 for Operations1.
project.
Create a new Class named wizard that extends SysWizard:2.



Working with Data in Forms

[ 153 ]

Create a new Form named wizard, select a design, and apply the design pattern3.
Wizard:

Address BP Warnings:4.

Design.Caption isn't empty
The form must be referenced by at least one menu item
TabPage.Caption isn't empty (for all wizard content pages)
MainInstruction.Text isn't empty (for all wizard content pages)



Working with Data in Forms

[ 154 ]

The form design should look as follows:

Create a new display menu item named Wizard, set its Object Type as Class5.
and Object as Wizard, and the properties window should look as follows:



Working with Data in Forms

[ 155 ]

Create a new macro library named MainAccountWizard with the following line6.
of code:

     #define.tabStep2(2)

Modify the Wizard class by adding the following lines of code to its class7.
declaration:

        MainAccount mainAccount;
        #MainAccountWizard

Add a new method in the class name accessMenuFunction:8.

/// <summary>
/// Retrieves a menu function.
/// </summary>
/// <returns>
/// The menu function.
/// </returns>
public MenuFunction accessMenuFunction()
{
   return new
   MenuFunction
    (menuitemDisplayStr(Wizard),MenuItemType::Display);
}

Override the method formname() and add the following line of code:9.

          return formStr(Wizard);



Working with Data in Forms

[ 156 ]

Add a new method parmCallerDest and use the following code:10.

        /// <summary>
        /// Gets or sets caller destination (used to get parameter from
        menu item)
        /// </summary>
        /// <param name="_callerDest">Caller destination.</param>
        /// <returns>Caller destination</returns>
        public str parmCallerDest(str _callerDest = callerDest)
        {
           callerDest = _callerDest;

           return callerDest;
        }

Add the following line of code to the overridden method setupNavigation()11.
in the same class:

        nextEnabled[#tabStep2] = false;

Override the finish() method of the class with the following code snippet:12.

        protected void finish()
       {
          mainAccount.initValue();
          mainAccount.LedgerChartOfAccounts =
          LedgerChartOfAccounts::current();
          mainAccount.MainAccountId = formRun.accountNum();
          mainAccount.Name = formRun.accountName();
          mainAccount.Type = formRun.accountType();

          super();
       }

Replace the validate() method of the same class with the following code13.
snippet:

        boolean validate()
       {
          return mainAccount.validateWrite();
       }



Working with Data in Forms

[ 157 ]

Replace the run() method of the same class with the following code snippet:14.

        void run()
       {
          mainAccount.insert();

          info(strFmt(
          "Ledger account '%1' was successfully created",
          mainAccount.MainAccountId));
       }

In the Wizard form, add the following line of code to its class declaration:15.

        #MainAccountWizard

Change the form's design property:16.

Property Value

Caption Main account wizard

Modify the properties of the Step1 tab page, as follows:17.

Property Value

Caption Welcome

Add a new StaticText control in this tab page with the following properties:18.

Property Value

Name WelcomeTxt

Text This wizard helps you to create a new main account.

Modify the properties of the Step2 tab page:19.

Property Value

Caption Account setup

HelpText Specify account number, name, and type.



Working with Data in Forms

[ 158 ]

Add a new StringEdit control in this tab page with the following properties:20.

Property Value

Name AccountNum

AutoDeclaration Yes

Label Main account

ExtendedDataType AccountNum

Add one more StringEdit control in this tab page with the following21.
properties:

Property Value

Name AccountName

AutoDeclaration Yes

ExtendedDataType AccountName

Add a new ComboBox control in this tab page with the following properties:22.

Property Value

Name AccountType

AutoDeclaration Yes

EnumType DimensionLedgerAccountType

Modify the properties of the Step3 tab page, as follows:23.

Property Value

Caption Finish

Add a new StaticText control on this tab page with the following properties:24.

Property Value

Name FinishTxt

Text This wizard is now ready to create new main account.



Working with Data in Forms

[ 159 ]

Create the following four methods at the top level of the form:25.

public MainAccountNum accountNum()
{
   return AccountNum.text();
}

public AccountName accountName()
{
   return AccountName.text();
}

public DimensionLedgerAccountType accountType()
{
   return AccountType.selection();
}
public void setNext()
{
   sysWizard.nextEnabled(
   this.accountNum() && this.accountName(),
   #tabStep2,
   false);
}

Add the following code in the init() method of the form:26.

        public void init()
      {
         super();
         if (element.Args().caller())
        {
           sysWizard = element.Args().caller();
        }
         else
        {
           Wizard::main(new Args());
           element.closeCancel();
        }
      }

Add a new method named tab() and place the following code:27.

        FormTabControl tab()
       {
          return MainTab;
       }



Working with Data in Forms

[ 160 ]

Add a new method that returns the reference of the wizard instance:28.

        SysWizard wizard()
      {
         return sysWizard;
      }

Now, override the textChange() method on the AccountNum and29.
AccountName controls with the following code:

        public void textChange()
       {
         super();
         element.setNext();
       }

After all modifications, the form will look as follows:

In order to test the newly created wizard, run the Wizard menu item, and the30.
wizard will appear. On the first page, click on Next:



Working with Data in Forms

[ 161 ]

On the second page, specify Main account, Account name, and Main account31.
type:



Working with Data in Forms

[ 162 ]

On the last page, click on Finish to complete the wizard:32.

The Infolog window will display a message that a new account was created33.
successfully:

How it works...
The wizard creates three AOT objects for us:

The Wizard class, which contains all the logic required to run the wizard
The Wizard form, which is the wizard layout
Finally, the Wizard display menu item, which is used to start the wizard and can
be added to a menu



Working with Data in Forms

[ 163 ]

The generated wizard is just a starting point for our custom wizard. It already has three
pages, as we specified during its creation, but we still have to add new user input controls
and custom code in order to implement our requirements.

We start by defining a new #tabStep2 macro, which holds the number of the second tab
page. We are going to refer to this page several times, so it is good practice to define its
number in one place.

In the Wizard class, we override its setupNavigation() method, which is used to define
initial button states. We use this method to disable the Next button on the second page by
default. The nextEnabled variable is an array holding the initial enabled or disabled state
for each tab page.

The overridden finish() method is called when the user clicks on the Finish button. Here,
we initialize the record and then assign user input to the corresponding field values.

In the validate() method, we check the account that will be created. This method is called
right after the user clicks on the Finish button at the end of the wizard and before the main
code is executed in the run() method. Here, we simply call the validateWrite() method
for the record from the main account table.

The last thing to do in the class is to place the main wizard code--insert the record and
display a message--in the run() method.

In the Wizard form's design, we modify properties of each tab page and add text to explain
to the user the purpose of each step. Note that the HelpText property value on the second
tab page appears as a step description right below the step title during runtime. This is done
automatically by the SysWizard class.

Finally, on the second tab page, we place three controls for user input. Later on, we create
three methods which return the controls' values: account number, name, and type values,
respectively. We also override the textChange() event methods on the controls to
determine and update the runtime state of the Next button. These methods call the
setNext() method, which actually controls the behavior of the Next button. In our case,
we enable the Next button as soon as all input controls have values.



Working with Data in Forms

[ 164 ]

Processing multiple records
In Dynamics 365 for Finance and Operations, by default, most of the functions available on
forms are related to currently selected single record. However, on many Dynamics 365 for
Finance and Operations forms you will find a multiple record selection option, but at the
same time ,you will be able to perform some certain operations only. So, to perform a
specific operation on all selected records, some modification is required.

In this recipe, we will explore how to process multiple records at the same time. You can
modify an existing process for the same. For this demonstration, we will add a new button
to the action pane on the Vend Table form to show multiple selected accounts in the
Infolog window.

How to do it...
For this recipe, we will extend the VendTable form. Currently, we don't have an option to
put multiple vendors on hold in a single click. So, we will add a new button there to process
all selected vendors. Carry out the following steps in order to complete this recipe:

Add a new project in your Visual Studio Solution ProcessingMultipleRecords, create
an extension of the VendTable form from AOT, and add this to the project.

To process selected records, add a new button ProcessSelected to the1.
VendorModifyButtonGroup control in the action pane. Add the button here
with the following properties:

Property Value

Name ProcessSelected

Text On hold (All selected)

MultiSelect Yes

Create a new extension class VendTableFrom_Extension for the VendTable2.
form and add a method with the following code snippet:

        [ExtensionOf(formstr(VendTable))]
        final class VendTableFrom_Extension
        public void processSelected(FormControl sender,
        FormControlEventArgs e)
       {
          VendTable tmpVendTable, updateVendTable;



Working with Data in Forms

[ 165 ]

          int     recordUpdated;
          for(tmpVendTable = this.VendTable_ds.getFirst(true) ?
          this.VendTable_ds.getFirst(true) :
          this.VendTable_ds.cursor(); tmpVendTable; tmpVendTable =
          this.VendTable_ds.getNext())
         {
            ttsbegin;
            select firstonly forupdate updateVendTable where
            updateVendTable.AccountNum == tmpVendTable.AccountNum;
            updateVendTable.Blocked = CustVendorBlocked::All;
            updateVendTable.update();
            recordUpdated++;
            ttscommit;
         }
            info(strFmt("Total %1 records processed", recordUpdated));
       }
      }

Now, copy the OnClicked event handler from the ProcessSelected button3.
control and add a new method in VendTableFrom_Extension with the
following code snippet:

           /// <summary>
           ///
           /// </summary>
           /// <param name="sender"></param>
           /// <param name="e"></param>
           [FormControlEventHandler(formControlStr(VendTable,
           ProcessSelected), FormControlEventType::Clicked)]
           public void ProcessSelected_OnClicked(FormControl sender,
           FormControlEventArgs e)
          {
             this.processSelected(sender,e);
          }



Working with Data in Forms

[ 166 ]

In order to test the record selection, navigate to Accounts payable | Vendor | All4.
vendors, select several records, and click on the new On Hold (All selected)
button.



Working with Data in Forms

[ 167 ]

The selected items will be displayed in the Vendors on hold form as well. To5.
check, navigate to Accounts payable | Vendor | Vendors on hold.

How it works...
In earlier versions, we had MultiSelectionHelper to support such customization. In
current versions, this class has been deprecated. So we have to travel record by record here.

Next, get the first marked record using VendTable_DS.getFirst(true), and then go
through all the other marked records (if any) using VendTable_DS.getnext() and
process them one by one. In this demonstration, we simply put vendors on hold using this
code.

The last thing to do is to update the table using another object of the table. Note that the
button's MultiSelect property is set to Yes to ensure it is still enabled when multiple
records are marked.



Working with Data in Forms

[ 168 ]

Coloring records
One of Dynamics 365 for Operation's exciting features, which can enhance user experience,
is the ability to color individual records. Some users might find the system more intuitive
and user-friendly through this modification.

For example, emphasizing the importance of disabled records by highlighting terminated
employees or former customers in red allows users to identify relevant records at a glance.
Another example is to show processed records, such as posted journals or invoiced sales
orders, in green.

Getting ready
In this recipe, we will learn how to change a record's color. We will use one created earlier
form the PktDisabledUser form located in System administration | Users | Disabled
Users with color and add a method to show disabled users in red.

How to do it...
Add a new project in your solution.1.
Go to application explorer and search for the PktDisabledUser form; add this2.
form to your project.
Now, override the displayOption() method in its UserInfo data source with3.
the following code snippet:

        public void displayOption(
        Common _record,
        FormRowDisplayOption _options)
       {
          if (!_record.(fieldNum(UserInfo,Enable)))
         {
            _options.backColor(WinAPI::RGB2int(255,100,100));
         }

        super(_record, _options);
       }



Working with Data in Forms

[ 169 ]

You should take care with the selected model for your project, every time
you add/customize an object into your project.

In order to test the coloring, navigate to System administration | Users | Users |4.
Disabled Users with color and note how disabled users are now displayed in a
different color:

How it works...
The displayOption() method on any form's data source can be used to change some of
the visual options. Before displaying each record, this method is called by the system with
two arguments--the first is the current record and the second is a FormRowDisplayOption
object--whose properties can be used to change a record's visual settings just before it
appears onscreen. In this example, we check whether the current user is disabled, and if
they are, we change the background property to light red by calling the backColor()
method with the color code.



Working with Data in Forms

[ 170 ]

In this example, we used the _record.(fieldNum(UserInfo,Enable)) expression to
address the Enable field on the UserInfo table. This type of expression is normally used
when we know the type of record, but it is declared as a generic Common type.

For demonstration purposes, we specified the color directly in the code, but it is a good
practice for the color code to come from a configuration table. See the Creating a color picker
lookup recipe in Chapter 4, Building Lookups, to learn how to allow the user to choose and
store the color selection.

See also
The Creating a color picker lookup recipe in Chapter 4, Building Lookups
The Creating a new form recipe in Chapter 2, Working with forms

Adding an image to records
Company-specific images in Dynamics 365 for Finance and Operations can be stored along
with the data in the database tables. They can be used for different purposes, such as a
company logo that is displayed in every printed document, employee photos, inventory
pictures, and so on.

Images are binary objects and they can be stored in the container table fields. In order to
make the system perform better, it is always recommended to store images in a separate
table so that it does not affect the retrieval speed of the main data.

One of the most convenient ways to attach images to record is to use the Document
handling feature of Dynamics 365 for Finance and Operations. It does not require any
change in the application. However, the Document handling feature is a very generic way
of attaching files to record and might not be suitable for specific circumstances.

Another way of attaching images to records is to utilize the standard application objects,
though minor application changes are required. For example, the company logo in the
Legal entities form, located at Organization administration | Setup | Organization, is one
of the places where the images are stored that way.

In this recipe, we will explore the latter option. As an example, we will add the ability to
store an image for each customer. We will also add a new Image button on the Customers
form, allowing us to attach or remove images from customers.



Working with Data in Forms

[ 171 ]

How to do it...
Carry out the following steps in order to complete this recipe:

Open the CustTable form in the AOT. Add a new MenuItemButton control at1.
the bottom of the Accounts button group, which is located at ActionPaneHeader
| aptabCustomer | btngrpCustomerAccounts, with the following properties:

Property Value

Name Image

Text Image

ButtonDisplay TextWithImageAbove

NormalImage 10598

ImageLocation EmbeddedResource

DataSource CustTable

MenuItemType Display

MenuItemName CompanyImage

Navigate to Accounts receivable | Customers | All customers and note the new2.
Image button in the action pane:



Working with Data in Forms

[ 172 ]

Click on the button, and then use the Change button to upload a new image for3.
the selected item:

The Remove button can be used to delete an existing image.

How it works...
In this demonstration, there are only three standard Dynamics 365 for Finance and
Operations objects used:

The CompanyImage table, which holds image data and information about the
record to which the image is attached. The separate table allows you to easily
hook image functionality to any other existing table without modifying that table
or decreasing its performance.
The CompanyImage form, which shows an image and allows you to modify it.
The Display menu item CompanyImage, which allows you to open the form.

We added the menu item to the CustTable form and modified some of its visual
properties. This ensures that it looks consistent with the rest of the action pane. We also
changed its DataSource property to the CustTable data source. This makes sure that the
image is stored against that record.

There's more...
The following two topics will explain how a stored image can be displayed as a new tab
page on the main form and how it can be saved back to a file.



Working with Data in Forms

[ 173 ]

Displaying an image as part of a form
In this section, we will extend the recipe by displaying the stored image on a new tab page
on the Customers form.

Firstly, we need to add a new tab page to the end of the CustTable form's TabHeader
control, which is located inside another tab page called TabPageDetails. This is where our
image will be displayed. Right-click on this new tab and set the patterns to Image Preview
as follows:

Set the following properties of the new tab page:

Property Value

Name TabImage

AutoDeclaration Yes

Caption Image

Add a new Window type control to the tab page. This control will be used to display the
image. Set its properties as follows:

Property Value

Name CustImage

AutoDeclaration Yes



Working with Data in Forms

[ 174 ]

Next, let's create a new method at the top level of the CustTable form:

    public void loadImage()
    {
       Image        img;
       CompanyImage companyImage;

       companyImage = CompanyImage::find(
       CustTable.dataAreaId,
       CustTable.TableId,
       CustTable.RecId);

       if (companyImage.Image)
      {
         img = new Image();
         img.setData(companyImage.Image);
         CustImage.image(img);
      }
       else
      {
         CustImage.image(null);
      }

    }

This method finds a CompanyImage record first, which is attached to the current record,
and then displays the binary data using the CustImage control. If no image is attached, the
Window control is cleared to display an empty space.

Next, we add the following line of code after super to the bottom of the
selectionChanged() method of the CustTable data source to ensure that the image is
loaded for a currently selected record:

  element.loadImage();

Now, save all your code and build the VS solution. To test your code, navigate to Account
receivable | Customers | All customers, select previously used customers, and click on the
customer Account number in the grid. On the Customers form, note the new tab page with
the image displayed:



Working with Data in Forms

[ 175 ]

Saving a stored image as a file
This section will describe how the stored image can be restored back to a file. This is quite a
common case when the original image file is lost. We will enhance the standard Image form
by adding a new Save as button, which allows us to save the stored image as a file.

Let's find the CompanyImage form in the AOT and add a new Button control to the form's
ButtonGroup, which is located in the first tab of the ActionPane control. Set the button's
properties as follows:

Property Value

Name SaveAs

Text Save as



Working with Data in Forms

[ 176 ]

Create a new method at the top level of the form:

     public void saveImage()
    {
       Image    img;
       Filename name;
       str      type;
       #File

      if (!imageContainer)
     {
        return;
     }

        img = new Image();
        img.setData(imageContainer);

        type = '.'+strLwr(enum2value(img.saveType()));
        name = WinAPI::getSaveFileName(
        element.hWnd(),
        [WinAPI::fileType(type),#AllFilesName+type],
        '',
        '');

        if (name)
       {
          img.saveImage(name);
       }
    }

This method will present the user with the Save as dialog, allowing them to choose the
desired filename to save the current image. Note that the imageContainer form variable
holds image data. If it is empty, it means there is no image attached, and we do not run any
of the code. We also determine the loaded file type to make sure our Save as dialog shows
only files of that particular type, for example, JPEG.

Override the button's clicked() method with the following code snippet to make sure
that the saveImage() method is executed once the user clicks on the button:

      void clicked()
     {
        super();
        element.saveImage();
     }



Working with Data in Forms

[ 177 ]

Now, save all your changes and build your solution. To test, go to Account receivable |
Customers | All customers, click on the Image button, and you will find that a new Save as
button is available:

Use this button to save the stored image as a file:



Working with Data in Forms

[ 178 ]

Note that the CompanyImage form is used system-wide and the new button is available
across the whole system now.

We do not recommend overlaying unless it's the only option. We urge you
to always try to use extensions, event handlers, and events for your
development to achieve any requirement rather than overlaying standard
objects. You may have found some recipes here with overlaying objects; all
of them just for illustration purposes, and to simplify the explanation of
the actual agenda of the recipe.



4
Building Lookups

In this chapter, we will cover the following recipes:

Creating an automatic lookup
Creating a lookup dynamically
Using a form to build a lookup
Building a tree lookup
Displaying a list of custom options
Displaying custom options in another way
Building a lookup based on the record description
Building the browse for folder lookup
Creating a color picker lookup

Introduction
Lookups are the standard way to display a list of possible selection values to the user, while
editing or creating database records. Normally, standard lookups are created automatically
by the system in Dynamics 365 for Finance and Operations and are based on the extended
data types and table setup. It is also possible to override the standard functionality by
creating your own lookups from the code or using the Dynamics 365 for Finance and
Operations forms.

In this chapter, we will cover various lookup types, such as file selector, color picker, or tree
lookup, as well as the different approaches to create them.



Building Lookups

[ 180 ]

Creating an automatic lookup
EDT (Extended Data Type) and table relation type lookups are the simplest lookups in
Dynamics 365 for Finance and Operations and can be created in seconds without any
programming knowledge. They are based on table relations and appear automatically. No
additional modifications are required.

This recipe will show you how to create a very basic automatic lookup using table relations.
To demonstrate this, we will add a new Method of payment column to the existing
Customer group form.

How to do it...
To create an automatic lookup, we can follow the following steps:

Create a new solution named CreatingAutomaticLookup and assign an1.
appropriate package to it.
Find a CustGroup table in AOT under application explorer, right-click the table,2.
and select the option CreateExtension to add it to the project and create a new
string type field in the table with the following properties:

Property Value

Name PaymMode

ExtendedDataType CustPaymMode

Add the newly created field to the end of the Overview field group of the table.3.
Save your object(s) and build the solution.4.
To check the results, navigate to Accounts receivable | Setup | Customers |5.
Customer groups and note the newly created Method of payment column with
the lookup:



Building Lookups

[ 181 ]

How it works...
The newly created PaymMode field is based on the CustPaymMode extended data type and
therefore, it automatically inherits its relation. To follow the best practices, all relations must
be present on tables. We also add the newly created field to the table's Overview group to
make sure that the field automatically appears on the Customer group form. This relation
ensures that the field has an automatic lookup.

There's more...
The automatically generated lookup, in the preceding example, has only two columns--
Method of payment and Description. Dynamics 365 for Finance and Operations allows
us to add more columns or change the existing columns with minimum effort by changing
various properties. Lookup columns can be controlled at several different places:

Relation fields, on either an extended data type or a table, are always shown on
lookups as columns.



Building Lookups

[ 182 ]

Fields defined in the table's TitleField1 and TitleField2 properties are also
displayed as lookup columns.
The first field of every table's index is displayed as a column.
The index fields and the TitleField1 and TitleField2 properties are in effect
only when the AutoLookup field group of a table is empty. Otherwise, the fields
defined in the AutoLookup group are displayed as lookup columns along with
the relation columns.
Duplicate columns are shown only once.

Now, to demonstrate how the AutoLookup group can affect lookup columns, let us modify
the previous example by adding an additional field to this group. Let us customize and add
the PaymSumBy field to the AutoLookup group on the CustPaymModeTable table in the
middle, between the PaymMode and Name fields. Now, the lookup has one more column
labeled Period:

It is also possible to add display methods to the lookup's column list. We can extend our
example by adding the paymAccountName() display method to the AutoLookup group on
the CustPaymModeTable table right after PaymSumBy. Save your object and build the
project. Check the result now:



Building Lookups

[ 183 ]

Now, in this lookup, we can see the Account Name next to Period, but with the display
method in this lookup we don't have options to filter the records. Methods have limitations
to display only records, similar to earlier versions, of Dynamics 365 for Finance and
Operations.

Creating a lookup dynamically
Automatic lookups, mentioned in the previous recipe, are widely used across the system
and are very useful in simple scenarios. When it comes to showing different fields from
different data sources, applying various static or dynamic filters, or similar, some coding is
required. The current version of Dynamics 365 for Finance and Operations is flexible
enough that the developer can create custom lookups, either using the Dynamics 365 for
Finance and Operations forms or by running them dynamically from the X++ code.

This recipe will show how to dynamically build a runtime lookup from the code. In this
demonstration, we will modify the Vendor account lookup on the Customers form to allow
users to select only those vendors that use the same currency as the currently selected
customer.



Building Lookups

[ 184 ]

How to do it...
To create a lookup dynamically, we can follow the following steps:-

Create a new solution name CreatingDynamicLookup and assign an1.
appropriate package to it.
Create a new extension class for the VendTable table and add it to the project.2.
Use the following code in the class:

        [ExtensionOf(tableStr(VendTable))]
        final class VendTable_Extension
        {
           public static void lookupVendorByCurrency(
           FormControl  _callingControl,
           CurrencyCode _currency)
          {
             Query                   query;
             QueryBuildDataSource    qbds;
             QueryBuildRange         qbr;
             SysTableLookup          lookup;
             query = new Query();
             qbds = query.addDataSource(tableNum(VendTable));
             qbr = qbds.addRange(fieldNum(VendTable,Currency));
             qbr.value(queryvalue(_currency));
             lookup = SysTableLookup::newParameters(
             tableNum(VendTable),
              _callingControl,
              true);
             lookup.parmQuery(query);
             lookup.addLookupField(
             fieldNum(VendTable, AccountNum),
             true);
             lookup.addLookupField(fieldNum(VendTable,Party));
             lookup.addLookupField(fieldNum(VendTable,Currency));
             lookup.performFormLookup();
          }
        }

Now create a new extension class for the CustTable form with the name3.
CustTable_Extension. Find form CustTable and then, in the design, locate
the VendAccount field at
CustTable\Design\Tab\TabPageDetails\TabHeader\TabDetails\Vendor

\Vendor_VendAccount, copy its OnLookup() event, and paste it in an extension
class with the following code snippet:

     [ExtensionOf(formStr(CustTable))]



Building Lookups

[ 185 ]

     final class CustTable_Extension
     {
       [FormControlEventHandler(formControlStr(CustTable,
       Vendor_VendAccount), FormControlEventType::Lookup)]
       public void Vendor_VendAccount_OnLookup(
       FormControl sender,FormControlEventArgs e)
       {
         VendTable::lookupVendorByCurrency(
         sender, this.CustTable.Currency);
         FormControlCancelableSuperEventArgs cancelSuper =
         e as FormControlCancelableSuperEventArgs;

         //cancel super() to prevent error.
         cancelSuper.CancelSuperCall();
       }
     }

To test this, navigate to Accounts receivable | Common | Customers | All4.
customers, select any of the customers, and click on Edit in the action pane. Once
the Customers form is displayed, expand the Vendor account lookup located in
the Miscellaneous details tab page, under the Remittance group. The modified
lookup now has an additional column named Currency, and vendors in the list
will match the customer's currency. The following screenshot depicts this:



Building Lookups

[ 186 ]

How it works...
First, on the VendTable table, we create a new method that generates the lookup. This is
the most convenient place for such a method, taking into consideration that it may be
reused at a number of other places.

In this method, we first create a new query, which will be the base for lookup records. In
this query, we add a new data source based on the VendTable table and define a new range
based on the Currency field.

Next, we create the actual lookup object and pass the query object through the
parmQuery() member method. The lookup object is created using the newParameters()
constructor of the SysTableLookup class. It accepts the following three parameters:

The table ID, which is going to be displayed.
A reference to the form calling the control.
An optional boolean value, which specifies that the value in the control should
be preselected in the lookup. The default is true.

We use the addLookupField() method to add three columns--Vendor account, Name,
and Currency. This method accepts the following parameters:

The ID of the field that will be displayed as a column.
An optional Boolean parameter that defines which column will be used as a
return value to the caller control upon user selection. Only one column can be
marked as a return value. In our case, it is vendor account.

Finally, we run the lookup by calling the performFormLookup() method.

The last thing to do is to add some code to the lookup() method of the VendAccount field
of the CustTable data source in the CustTable form. By replacing its super() method with
our custom code, we have overridden the standard, automatically generated lookup, with
the custom lookup.



Building Lookups

[ 187 ]

There's more...
Suppose for some use case we need to show the vendor balance as well. We could achieve
this by using the method balanceAllCurrency on VendTable, which displays the vendor
balance. To do so, we could add the following code in the lookupVendorByCurrency
method in the VendTable_Extension class before the performFormLookup() method
call:

    lookup.addLookupField(fieldNum(VendTable,Party));
    lookup.addLookupField(fieldNum(VendTable,Currency));
    lookup.addLookupMethod
     (tableMethodStr(VendTable,balanceAllCurrency));
    lookup.performFormLookup();

Using a form to build a lookup
For the most complex scenarios, where you need some advance lookups with more options
on data filtration or selection; Dynamics 365 for Finance and Operations offers the
possibility to create and use a form as a lookup, by creating a new form.

Similar to forms, the form lookups support various features, such as tab pages, event
handling, complex logic, and so on. In this recipe, we will demonstrate how to create a
lookup using a form. As an example, we will modify the standard customer account lookup
to display only the customers who are not placed on hold for invoicing and delivery.

How to do it...
Add a new project and create a new form named CustLookup. Add a new data1.
source with the following properties:

Property Value

Name CustTable

Table CustTable

AllowCheck No

AllowEdit No

AllowCreate No



Building Lookups

[ 188 ]

AllowDelete No

OnlyFetchActive Yes

Right-click on Design and Add form Pattern Lookup - Basic on design.2.
Add a new grid control to the form's design with the following properties:3.

Property Value

Name Customers

ShowRowLabels No

DataSource CustTable

Drag and drop AccountNum and Blocked fields from a CustTable data source.4.
Set property auto declaration to Yes.
Add a new ReferenceGroup control to the grid with the following properties,5.
right after AccountNum:

Property Value

Name Name

DataSource CustTable

ReferenceField Party

Add one more StringEdit control to the grid with the following properties,6.
right after the Name:

Property Value

Name Phone

DataSource CustTable

DataMethod phone



Building Lookups

[ 189 ]

Override the form's init() method with the following code snippet:7.

        public void init()
        {
           super();
           element.selectMode(CustTable_AccountNum);
        }

Override the form's run() method with the following code snippet:8.

        public void run()
        {
           FormStringControl callingControl;
           boolean           filterLookup;
           callingControl = SysTableLookup::getCallerStringControl(
           element.args());
           filterLookup = SysTableLookup::filterLookupPreRun(
           callingControl,
           CustTable_AccountNum,
           CustTable_ds);
           super();
           SysTableLookup::filterLookupPostRun(
           filterLookup,
           callingControl.text(),
           CustTable_AccountNum,
           CustTable_ds);
        }

Finally, override the init() method of the CustTable data source with the9.
following code snippet:

        public void init()
        {
           Query                query;
           QueryBuildDataSource qbds;
           QueryBuildRange      qbr;
           query = new Query();
           qbds  = query.addDataSource(tableNum(CustTable));
           qbr = qbds.addRange(fieldNum(CustTable,Blocked));
           qbr.value(queryvalue(CustVendorBlocked::No));
           this.query(query);
        }



Building Lookups

[ 190 ]

The form in the Application Object Tree (AOT) will look similar to the following10.
screenshot:

Locate the CustAccount extended data type in the AOT, create its extension with11.
name CustAccount.Extension, and change its property as follows:

Property Value

FormHelp CustLookup

To test the results, navigate to Sales and marketing | Common | Sales orders |12.
All sales orders and start creating a new sales order. Note that, now, the
Customer account lookup is different, and it includes only active customers:



Building Lookups

[ 191 ]

How it works...
Automatically generated lookups have a limited set of features and are not suitable in more
complex scenarios. In this recipe, we are creating a brand new form-based lookup, which
will replace the existing customer account lookup. The name of the newly created form is
CustLookup and it contains the Lookup text at the end to make sure it can be easily
distinguished from other forms in the AOT.

In the form, we add a new data source and change its properties. We do not allow any data
updating by setting the AllowEdit, AllowCreate, and AllowDelete properties to No.
Security checks will be disabled by setting AllowCheck to No. To increase the performance,
we set OnlyFetchActive to Yes, which will reduce the size of the database result set to
only the fields that are visible on the form. We also set the data source index to define initial
data sorting.



Building Lookups

[ 192 ]

Next, in order to make our form lookup look exactly like a standard lookup, we have to
adjust its layout. Therefore, we set its Frame and WindowType properties to Border and
Popup, respectively. This removes form borders and makes the form very similar to a
standard lookup. Then, we add a new grid control with four controls inside, which are
bound to the relevant CustTable table fields and methods. We set the ShowRowLabels
property of the grid to No to hide the grid's row labels.

After this, we have to define which form control will be used to return a value from the
lookup to the calling form. We need to specify the form control manually in the form's
init() method, by calling element.selectMode(), with the name of the control as an
argument.

In the form's run() method, we add some filtering, which allows the user to use the
asterisk (*) symbol to search for records in the lookup. For example, if the user types 1*
into the Customer account control, the lookup will open automatically with all customer
accounts starting with 1. To achieve this, we use the filterLookupPreRun() and
filterLookupPostRun() methods of the standard SysTableLookup class. Both these
methods require a calling control, which can be obtained by the
getCallerStringControl() method of the same SysTableLookup class. The first
method reads the user input and returns true if a search is being performed, otherwise, it
returns false. It must be called before the super() method in the form's run() method,
and it accepts four arguments:

The calling control on the parent form
The returning control on the lookup form
The main data source on the lookup form
An optional list of other data sources on the lookup form, which are used in
the search

The filterLookupPostRun() method must be called after the super() method in the
form's run() method, and it also accepts four arguments:

A result value from the previously called filterLookupPreRun() method
The user text specified in the calling control
The returning control on the lookup form
The lookup data source

The code in the CustTable data source's init() method replaces the data source query
created by its super() method with the custom one. Basically, here, we create a new Query
object and change its range to include only active customers.



Building Lookups

[ 193 ]

The FormHelp property of the CustAccount extended data type will make sure that this
form is opened every time the user opens the Customer account lookup.

See also
The Building a query object recipe in Chapter 1, Processing Data

Building a tree lookup
The form's tree controls are a user-friendly way of displaying a hierarchy of related
records, such as a company's organizational structure, inventory bill of materials, projects
with their subprojects, and so on. These hierarchies can also be displayed in the custom
lookups, allowing users to browse and select the required value in a more convenient way.

The Using a tree control recipe in Chapter 2, Working with Forms, explained how to present
the budget model hierarchy as a tree in the Budget model form. In this recipe, we will reuse
the previously created BudgetModelTree class and demonstrate how to build a budget
model tree lookup.

How to do it...
In the AOT, create a new form named BudgetModelLookup. Set its design1.
properties as follows:

Property Value

Frame Border

WindowType Popup

Add a new Tree control to the design with the following properties:2.

Property Value

Name ModelTree

Width 250



Building Lookups

[ 194 ]

Add the following line of code to the form's class declaration:3.

        BudgetModelTree budgetModelTree;

Override the form's init() method with the following code snippet:4.

         public void init()
        {
           FormStringControl callingControl;
           callingControl = SysTableLookup::getCallerStringControl(
           this.args());
           super();
           budgetModelTree = BudgetModelTree::construct(
           ModelTree,
           callingControl.text());
           budgetModelTree.buildTree();
        }

Override the mouseDblClick() and mouseUp() methods of the ModelTree5.
control with the following code snippet:

           public int mouseDblClick(
           int _x,
           int _y,
           int _button,
           boolean _ctrl,
           boolean _shift)
           {
              int ret;
              FormTreeItem formTreeItem;
              BudgetModel  budgetModel;
              ret = super(_x, _y, _button, _ctrl, _shift);
              formTreeItem = this.getItem(this.getSelection());
              select firstOnly SubModelId from budgetModel
              where budgetModel.RecId == formTreeItem.data();
              element.closeSelect(budgetModel.SubModelId);
              return ret;
           }
           public int mouseUp(
            int _x,
            int _y,
            int _button,
            boolean _ctrl,
            boolean _shift)
            {
               int ret;
               ret = super(_x, _y, _button, _ctrl, _shift);



Building Lookups

[ 195 ]

               return 1;
            }

The form will look similar to the following screenshot:6.

In the AOT, open the BudgetModel table and change its lookupBudgetModel()7.
method with the following code snippet:

         public static void lookupBudgetModel(
         FormStringControl _ctrl,
         boolean _showStopped = false)
        {
           Args    args;
           Object  formRun;
           args = new Args();
           args.name(formStr(BudgetModelLookup));
           args.caller(_ctrl);
           formRun = classfactory.formRunClass(args);
           formRun.init();
           _ctrl.performFormLookup(formRun);
        }



Building Lookups

[ 196 ]

To see the results, navigate to Budgeting | Common | Budget register entries |8.
All budget register entries. Start creating a new entry by clicking on the Budget
register entry button in the action pane and expanding the Budget model
lookup:

How it works...
First, we create a new form named BudgetModelLookup, which we will use as a custom
lookup. We set its design's Frame and WindowType to Border and Popup respectively, to
change the layout of the form so that it looks like a lookup. We also add a new Tree control
and set its width.



Building Lookups

[ 197 ]

In the form's class declaration, we define the BudgetModelTree class, which we have
already created in the Using tree controls recipe in Chapter 2, Working with Forms.

The code in the form's init() method builds the tree. Here, we create a new object of the
BudgetModelTree type by calling the construct() constructor, which accepts two
arguments:

The Tree control, which represents the actual tree.
The Budget model, which is going to be preselected initially. Normally, it is a
value of the calling control, which can be detected using the
getCallerStringControl() method of the SysTableLookup application
class.
The code in mouseDblClick() returns the user-selected value from the tree node
back to the calling control and closes the lookup.
Finally, the mouseUp() method has to be overridden to return 1 to make sure 
that the lookup does not close while the user expands or collapses the tree nodes.

See also
The Using a tree control recipe in Chapter 2, Working with Forms

Displaying a list of custom options
Besides normal lookups, Dynamics 365 for Finance and Operations provides a number of
other ways to present the available data for user selection. It does not necessarily have to be
a record from the database; it can be a list of hardcoded options or some external data.
Normally, such lists are much smaller as opposed to those of the data-driven lookups, and
are used for very specific tasks.

In this recipe, we will create a lookup of several predefined options. We will use a job for
this demonstration.



Building Lookups

[ 198 ]

How to do it...
Add a new project and add a new RunnableClass named PickList:1.

        class PickList
       {
          /// <summary>
          /// Runs the class with the specified arguments.
          /// </summary>
          /// <param name = "_args">The specified arguments.</param>
          public static void main(Args _args)
         {
            Map choices;
            str ret;
            choices = new Map(
            Types::Integer,
            Types::String);
            choices.insert(1, "Axapta 3.0");
            choices.insert(2, "Dynamics AX 4.0");
            choices.insert(3, "Dynamics AX 2009");
            choices.insert(4, "Dynamics AX 2012");
            choices.insert(5, "Dynamics AX 7");
            choices.insert(6, "Dynamics 365");

            ret = pickList(choices, "", "Choose version");
            if (ret)
            {
               info(strFmt("You've selected option No. %1", ret));
            }
         }
       }

Save all your code, right-click on this new class, and click on Set as startup2.
object. Now build your project.



Building Lookups

[ 199 ]

Run the project to view the results:3.

Double-click on one of the options to show the selected option in the Infolog4.
window:



Building Lookups

[ 200 ]

How it works...
The key element in this recipe is the global pickList() function. Lookups created using
this function are based on values stored in a map. In our example, we define and initialize a
new map. Then, we insert a few key-value pairs and pass the map to the pickList()
function. This function accepts three parameters:

A map that contains lookup values
A column header, which is not used here
A lookup title

The function that displays values from the map returns the corresponding keys, once the
option is selected.

There's more...
The global pickList() function can basically display any list of values. Besides that,
Dynamics 365 for Finance and Operations also provides a number of other global lookup
functions, which can be used in more specific scenarios. Here are a few of them:

pickDataArea(): This shows a list of Dynamics 365 for Finance and Operations
companies.
pickUserGroups(): This shows a list of user groups in the system.
pickUser(): This shows a list of Dynamics 365 for Finance and Operations
users.
pickTable(): This shows all Dynamics 365 for Finance and Operations tables.
pickField(): This shows table fields. The table number has to be specified as an
argument for the function.
pickClass(): This shows a list of Dynamics 365 for Finance and Operations
classes.

Displaying custom options in another way
The global system functions, such as pickList() and pickUser(), allow developers to
build various lookups displaying a list of custom options. Besides that, the standard
Dynamics 365 for Finance and Operations application contains a few more useful functions,
allowing us to build more complex lookups of custom options.



Building Lookups

[ 201 ]

One of the custom functions is called selectSingle(), and it provides the user with a list
of options. It also displays a checkbox next to each option that allows users to select the
option. To demonstrate this, we will create a new class that shows the usage of these
functions.

How to do it...
Add a new project in the solution name DisplayCustomOptionsAnotherWay.1.
Find a SysListSelect form in AOT and select customize to add it in the project.2.
Add new method selectSingle and add the following code:3.

        public void selectSingle()
            {
               singleSelect = true;
            }

Now select project and add a new item, a new Runnable class (Job) named4.
SysListSelectSingle:

       class SysListSelectSingle
       {
          /// <summary>
          /// Runs the class with the specified arguments.
          /// </summary>
          /// <param name = "_args">The specified arguments.</param>
          public static void main(Args _args)
         {
            container choices;
            container headers;
            container selection;
            container selected;
            boolean   ok;
            choices = [
            ["3.0\nAxapta 3.0", 1, false],
            ["4.0\nDynamics AX 4.0", 2, false],
            ["2009\nDynamics AX 2009", 3, false],
            ["2012\nDynamics AX 2012", 4, false],
            ["2012R2\nDynamics AX 2012 R2", 5, false],
            ["2012R3\nDynamics AX 2012 R3", 6, true],
            ["2016\nDynamics 365 for operations", 7, true]];
            headers = ["Version", "Description"];
            selection = SysListSelectSingle::selectSingle(
            "Choose version",
            "Please select Dynamics AX version",



Building Lookups

[ 202 ]

            choices,
            headers);
            [ok, selected] = selection;
            if (ok && conLen(selected))
            {
               info(strFmt(
               "You've selected option No. %1",
                conPeek(selected,1)));
            }
         }
            static client container selectSingle(
            Caption     _caption,
            str  _info,// An info text displayed in the top of the form
            container _choices,
            container _headers = conNull(),// If null, the list view is
            used
            Object      _caller = null
            )
           {
              Args                    args;
              FormRun                 formRun;
              Object                  obj;
              container               selected;
              args = new Args(formStr(SysListSelect));
              args.caller(_caller);
              formRun = classfactory.formRunClass(args);
              formRun.init();
              formRun.design().visible(true);
              obj = formRun;
              obj.infotxt(_info);
              obj.choices(_choices);
              obj.headers(_headers);
              obj.selectSingle();
              formRun.run();
              formRun.wait();
              selected = obj.selected();
              if (conLen(selected) > 0)
             {
                return [formRun.closedOk(),[conPeek(selected,1)]];
             }
              return [formRun.closedOk(), conNull()];
           }



Building Lookups

[ 203 ]

Run the job to display the options:5.

Select any of the options, click on the OK button, and note that your choice is6.
displayed in the Infolog window shown in the following screenshot:



Building Lookups

[ 204 ]

How it works...
We start by defining the choices variable and setting its values. The variable is a container
and it holds container values, where each container inside the parent container is made of
three elements and represents one selectable option in the list:

The first element is text displayed on the lookup. By default, in the lookup, only
one column is displayed, but it is possible to define more columns, simply by
separating the texts using the new line symbol.
The second element is the number of an item in the list. This value is returned
from the lookup.
The third value specifies whether the option is marked by default.

Now, when the list values are ready, we call the selectSingle() function to build the
actual lookup. This function accepts five arguments:

The window title
The lookup description
A container of list values
A container representing column headings
An optional reference to a caller object

The singleSelect() function returns a container of two elements:

true or false depending whether the lookup was closed using the OK button
or not
The numeric value of the selected option

There's more...
You may notice that the lookup, which was created using the singleSelect() method,
allows chooses only one option from the list. There is another similar function named
selectMultiple(), which is exactly the same except that the user can select multiple
options from the list. The following code snippet demonstrates its usage:

     class SysListSelectMultiple
    {
       /// <summary>
       /// Runs the class with the specified arguments.
       /// </summary>
       /// <param name = "_args">The specified arguments.</param>



Building Lookups

[ 205 ]

       public static void main(Args _args)
       {
          container choices;
          container headers;
          container selection;
          container selected;
          boolean   ok;
          choices = [
          ["3.0\nAxapta 3.0", 1, false],
          ["4.0\nDynamics AX 4.0", 2, false],
          ["2009\nDynamics AX 2009", 3, false],
          ["2012\nDynamics AX 2012", 4, false],
          ["2012R2\nDynamics AX 2012 R2", 5, false],
          ["2012R3\nDynamics AX 2012 R3", 6, true],
          ["2016\nDynamics 365 for operations", 7, true]];
          headers = ["Version", "Description"];
          selection = SysListSelectMultiple::selectMultiple(
          "Choose version",
          "Please select Dynamics AX version",
          choices,
          headers);
          [ok, selected] = selection;
          if (ok && conLen(selected) > 0)
          {
             for (int i = 1; i <= conLen(selected); i++)
                {
                   info(strFmt(
                   "You've selected option No. %1",
                    conPeek(selected,i)));
                }
          }
       }
         /* Returns container with the status of how the form is
         closed plus the selected ids.*/
         static client container selectMultiple(
         Caption  _caption,
         str _info, // An info text displayed in the top of the form
         container _choices,
         container _headers = conNull(), // If null, the list view
         is  used
         Object      _caller = null
         )
        {
           Args                    args;
           FormRun                 formRun;
           Object                  obj;
           args = new Args(formStr(SysListSelect));
           args.caller(_caller);



Building Lookups

[ 206 ]

           formRun = classfactory.formRunClass(args);
           formRun.init();
           formRun.design().visible(true);
           obj = formRun;
           obj.infotxt(_info);
           obj.choices(_choices);
           obj.headers(_headers);
           formRun.run();
           formRun.wait();
           return [formRun.closedOk(),obj.selected()];
        }
    }

Now, in the lookup, it is possible to select multiple options:

Note that in this case, the returned value is a container holding the selected options.



Building Lookups

[ 207 ]

Building a lookup based on the record
description
Normally, data lookups in Dynamics 365 for Finance and Operations display a list of
records where the first column always contains a value, which is returned to a calling form.
The first column in the lookup normally contains a unique record identification value,
which is used to build relations between tables. For example, the Customer lookup displays
the customer account number, the customer name, and some other fields; the Inventory
item lookup displays the item number, the item name, and other fields.

In some cases, the record identifier can be not so informative. For example, it is much more
convenient to display a person's name versus its number. In the standard application, you
can find a number of places where the contact person is displayed as a person's name, even
though the actual table relation is based on the contact person's ID.

In this recipe, we will create such a lookup. We will replace the Vendor group selection
lookup on the Vendors form to show group description, instead of group ID.

How to do it...
In the AOT, create a new String extended data type with the following1.
properties:

Property Value

Name VendGroupDescriptionExt

Label Group

Extends Description

Open the VendTable table and create a new method with the following code2.
snippet:

          public edit VendGroupDescriptionExt editVendGroup(
          boolean                 _set,
          VendGroupDescriptionExt _group)
         {
            VendGroup vendGroup;
          if (_set)
          {
            if (_group)



Building Lookups

[ 208 ]

           {
              if (VendGroup::exist(_group))
              {
                 this.VendGroup = _group;
              }
              else
             {
                select firstOnly VendGroup from vendGroup
                where vendGroup.Name == _group;
                this.VendGroup = vendGroup.VendGroup;
             }
           }
                else
                {
                   this.VendGroup = '';
                }
          }
            return VendGroup::name(this.VendGroup);
         }

In the AOT, find the VendTable form, locate the Posting group control inside3.
MainTab | TabPageDetails | Tab | TabGeneral | UpperGroup | Posting , and
modify its properties as follows:

Property Value

DataGroup

In the same form, in the Posting group, modify the Posting_VendGroup4.
control as follows:

Property Value

DataField

DataMethod editVendGroup

Override the lookup() method of the Posting_VendGroup control with the5.
following code snippet:

        public void lookup()
        {
           this.performTypeLookup(extendedTypeNum(VendGroupId));
        }



Building Lookups

[ 209 ]

To check the results, navigate to Accounts payable | Common | Vendors | All6.
vendors, select any record, and click on the Edit button in the action pane. In the
opened form, check the newly created lookup on the Group control, located in the
General tab of the page:

How it works...
First, we create a new extended data type, which we will use as the basis for the Vendor
group selection control. The type extends the existing Description extended data type
as it has to be of the same size as the vendor group name. It will also have the same label as
VendGroupId because it is going to replace the existing Group control on the form.

Next, we create a new edit method, which is used to show the group description instead
of the group ID on the form. It also allows changing the control value.



Building Lookups

[ 210 ]

The edit method is created on the VendTable table, it is the most convenient place for
reuse and it uses the newly created extended data type. This ensures that the label of the
user control stays the same. The method accepts two arguments, as this is a mandatory
requirement for the edit methods. The first argument defines whether the control was
modified by the user, and if yes, the second argument holds the modified value. In this
recipe, the second value can be either group ID or group description. The value will be
group ID if the user selects this value from the lookup. It will be group description if the
user decides to manually type the value into the control. We use the extended data type,
which is bigger in size, that is, the VendGroupDescriptionExt type. The method returns a
vendor group name, which is shown on the form.

Next, we need to modify the VendTable form. We change the existing vendor group ID
control to use the newly created edit method. By doing this, we make the control unbound
and therefore lose the standard lookup functionality. To correct this, we override the
lookup() method on the control. Here, we use the performTypeLookup() method to
restore the lookup functionality.

There's more...
In the previous example, you may notice that the lookup does not find the currently
selected group. This is because the system tries to search group ID by group description.
This section will show how to solve this issue.

First, we have to create a new form named VendGroupLookup, that acts as a lookup. Add
a new data source to the form, with the following properties:

Property Value

Name VendGroup

Table VendGroup

Index GroupIdx

AllowCheck No

AllowEdit No

AllowCreate No

AllowDelete No

OnlyFetchActive Yes



Building Lookups

[ 211 ]

Change the properties of the form's design as follows:

Property Value

Frame Border

WindowType Popup

Add a new Grid control to the form's design with the following properties:

Property Value

Name VendGroups

ShowRowLabels No

DataSource VendGroup

DataGroup Overview

Several new controls will appear in the grid automatically. Change the properties of the
VendGroups_VendGroup control as follows:

Property Value

AutoDeclaration Yes

Override the form's init() and run() methods with the following code snippet,
respectively:

    public void init()
    {
       super();
       element.selectMode(VendGroups_VendGroup);
    }
   public void run()
    {
       VendGroupId groupId;
       groupId = element.args().lookupValue();
       super();
       VendGroup_ds.findValue(
       fieldNum(VendGroup,VendGroup), groupId);
    }



Building Lookups

[ 212 ]

The key element here is the findValue() method in the form's run() method. It places the
cursor on the currently selected vendor group record. The group ID is retrieved from the
argument's object using the lookupValue() method.

In the project, the form design will look similar to the following screenshot:

Next, we need to create a new static method on the VendGroup table, which opens the
new lookup form:

      public static void lookupVendorGroupForm(
      FormStringControl _callingControl,
      VendGroupId       _groupId)
    {
       FormRun formRun;
       Args    args;
       args = new Args();
       args.name(formStr(VendGroupLookup));
       args.lookupValue(_groupId);
       formRun = classFactory.formRunClass(args);
       formRun.init();
       _callingControl.performFormLookup(formRun);
    }

Here, we use the formRunClass() method of the global classFactory object. Note that
here we pass the group ID to the form through the Args object.

The final touch is to change the code in the lookup() method of the
VendGroups_VendGroup control on the VendTable form:

    public void lookup()
    {
       VendGroup::lookupVendorGroupForm(this, VendTable.VendGroup);
    }



Building Lookups

[ 213 ]

Now, when you open the Vendors form, make sure that the current vendor group in the
Group lookup is preselected correctly:

Building the browse for folder lookup
In Dynamics 365 for Finance and Operations, file reading or saving is a very common
operation. Normally, for non-automated operations, the system prompts the user for file
input.

This recipe will demonstrate how the user can be presented with the file browse dialog box
in order to choose the files in a convenient way.

Folder browsing lookups can be used when the user is required to specify a local or a
network folder, to store or retrieve external files. Such lookups are generated in Dynamics
365 for Finance and Operations using the File upload control.

In this recipe, we will learn how to create a lookup for folder browsing. As an example, we
will create a new field and control named Documents on the Vendor parameters form,
which will allow us to store a folder path.



Building Lookups

[ 214 ]

How to do it...
Create a new project. Open AOT, add a VendParameters table for1.
customization, and create a new field with the following properties:

Property Value

Type String

Name DocumentPath

Label Documents

ExtendedDataType FilePath

Add the newly created field to the bottom of the table's General field group.2.
In AOT, find form VendParameters and add it to the project using the3.
customize option.
Select form and datasource VendParameters and select the Restore option.4.
Add a new FileUploadControl next to the Document path with the following5.
properties:



Building Lookups

[ 215 ]

After restore, the form design should look as follows:6.

Next, open the VendParameters form and change the following methods:7.
init()

closeOk()

Declare a variable in the init method as follows:8.

       FileUpload  uploadControl;

Add the following lines in the init() method:9.

uploadControl = fileuploadControl;
uploadControl.notifyUploadCompleted +=
eventhandler(FileUploadControl.uploadCompleted);



Building Lookups

[ 216 ]

Add new method closeOk() on the VendParameters form as follows:10.

 public void closeOk()
{
   FileUpload  uploadControl;
   uploadControl = FileUploadControl;
   uploadControl.notifyUploadCompleted -=
   eventhandler(FileUploadControl.uploadCompleted);
   super();
}

Add a new method on FileUploadControl and add new code:11.

 public void uploadCompleted()
{
  FileUploadTemporaryStorageResult    fileUploadResult =
  FileUploadControl.getFileUploadResult();
  if (fileUploadResult != null &&
  fileUploadResult.getUploadStatus())
 {
    VendParameters.DocumentPath =
fileUploadResult.getFileName();
 }
}

Build and synchronize the project.12.
As a result, we will be able to select and store a text file in the Accounts13.
receivables | Setup | Accounts receivables parameters form in the Upload file
field under the General tab page:



Building Lookups

[ 217 ]

In the preceding screen, when you click on the Upload button under the General14.
group, a dialog opens up where we need to choose the file to upload, as shown in
the following screenshot:



Building Lookups

[ 218 ]

How it works...
In this recipe, we first create a new field to store the file location. We use the Filepath
extended data type. We also add this field to the field group in the table to ensure that it is
displayed on the form automatically. A File upload control is added to handle file
upload events on the form.

The following form methods are called by the file upload control and must be present on
the caller form:

The uploadCompleted() method contains code to get the file path and place it
in the DocumentPath field
The int() and closeOK() method delegates the uploadCompleted() method

There's more...
Additionally, if we want to select a file of a certain type, then we can easily go on
FileUploadControl, look at its properties, and find FileTypesAccepted. We could
select .txt as shown in the following screenshot:



Building Lookups

[ 219 ]

This would make our browse folder lookup as follows, and would by default allow us to
select a *.txt file:

Creating a color picker lookup
In Dynamics 365 for Finance and Operations, the color selection dialog boxes are used in
various places, allowing the user to select and store a color code in a table field. Then the
stored color code can be used in various places to color data records, change form
backgrounds, set colors for various controls, and so on.

In this recipe, we will create a color lookup. For demonstration purposes, we will add an
option to set a color for each legal entity in the system.



Building Lookups

[ 220 ]

How to do it...
In the AOT, open the CompanyInfo table and create a new field with the1.
following properties:

Property Value

Type Integer

Name CompanyColor

ExtendedDataType CCColor

Open the OMLegalEntity form, locate the TopPanel group in Design | Tab |2.
General, and add a new IntEdit control with the following properties to the
bottom of the group:

Property Value

Name CompanyColor

AutoDeclaration Yes

LookupButton Always

ShowZero No

Label Company color

In the same form, create a new method with the following code snippet in the3.
CompanyInfo data source:

       public edit CCColor editCompanyColor(boolean     _set,
       CompanyInfo _companyInfo,
       CCColor     _color)
      {
          if (_companyInfo.CompanyColor)
       {
          CompanyColor.backgroundColor(_companyInfo.CompanyColor);
       }
        else
      {
CompanyColor.backgroundColor(WinAPI::RGB2int(255,255,255));
      }
CompanyColor.foregroundColor(CompanyColor.backgroundColor());
       return _companyInfo.CompanyColor;



Building Lookups

[ 221 ]

      }

Update the properties of the newly created CompanyColor control as follows:4.

Property Value

DataSource CompanyInfo

DataMethod editCompanyColor

On the same control, override its lookup() method with the following code5.
snippet:

        public void lookup()
        {
           int       red;
           int       green;
           int       blue;
           int color = this.value();
           color = ColorSelection::selectColor(this, color);
           CompanyInfo.CompanyColor = color;
           this.value(color);
           this.backgroundColor(color);
        }

To test the results, navigate to Organization administration |Organization |6.
Legal entities and note the newly created Company color lookup:



Building Lookups

[ 222 ]

How it works...
Dynamics 365 for Finance and Operations does not have a special control to select colors.
Therefore, we have to create a fake control, which is presented to the user as a color
selection.

Colors in Dynamics 365 for Finance and Operations are stored as integers, so we first create
a new Integer field on the CompanyInfo table. On the form, we create a new control,
which will display the color. The created control does not have any automatic lookup and
therefore it does not have the lookup button next to it. We have to force the button to
appear by setting the control's LookupButton property to Always.

Next, we create a new edit method, which is then set on the created control as a data
method. This method is responsible for changing the control's background to match the
stored color. This gives an impression to the user that the chosen color was saved. The
background is set to white if no value is present. The method always returns the value 0
because we do not want to show the actual color code in it. The control's ShowZero
property is set to No to ensure that even the returned 0 is not displayed. In this way, we
create a control that looks like a real color selection control.

The last thing to do is to override the control's lookup() method with the code that invokes
the color selection dialog box. Here, we use the selectColor method of the
ColorSelection class to convert the current control's background color into a red-green-
blue component set. This set is then passed to the value() method to make sure that the
currently set color is selected on the lookup initially. The selectColor() method is the
main method, which invokes the lookup. It accepts the following arguments:

The current window handle
A binary object representing up to 16 custom colors

This method returns an integer code of the color components, which has to be converted
back to a numeric value in order to store it in the table field.



5
Processing Business Tasks

In this chapter, we will cover the following recipes:

Using a segmented entry control
Creating a general journal
Posting a general journal
Processing a project journal
Creating and posting a ledger voucher
Changing an automatic transaction text
Creating a purchase order
Posting a purchase order
Creating a sales order
Posting a sales order
Creating an electronic payment format

Introduction
In Dynamics 365 for Finance and Operations, various business operations, such as creating
financial journals, posting sales orders, and generating vendor payments are performed
from the user interface by users on a periodic basis. For developers, it is very important to
understand how it works internally in new Dynamics 365 for Finance and Operations so
that the logic can be used to design and implement new customized business logic.



Processing Business Tasks

[ 224 ]

This chapter will explain how various Dynamics 365 business operations can be performed
through the code. We will discuss how to perform different operations on various journals,
sales order, purchase orders, and so on. This chapter also explains how to work with the
ledger voucher object and how to enhance the setup of the automatically-generated
transaction texts. Posting purchase and sales orders and changing business document
layout per company are also discussed here. This chapter includes other features, such as
creating a new electronic payment format and controlling the display of inventory
dimensions.

Using a segmented entry control
In Dynamics 365 for Finance and Operations, segmented entry control can simplify the task
of entering complex account and dimension combinations. The control consists of a
dynamic number of elements, named segments. The number of segments may vary
depending on the setup, and their lookup values may depend on the values specified in
other segments in the same control. The segmented entry control always uses the controller
class, which handles the entry and display in the control.

In this recipe, we will show you how a segmented entry control can be added to a form. In
this demonstration, we will add a new Ledger account control to the general ledger
parameters form, assuming that the control can be used as a default ledger account for
various functions. The example does not make much sense in practice, but it is perfectly
suitable to demonstrate the usage of the segmented entry control.

How to do it...
Carry out the following steps in order to complete this recipe:

Create a new extension of the LedgerParameters table in your project and1.
create a new Int64 type field with the following properties (click on Yes to
automatically add a foreign key relationship once you are asked):

Property Value

Name LedgerDimension

ExtendedDataType LedgerDimensionAccount

Add the newly created field to the General group in the table.2.



Processing Business Tasks

[ 225 ]

Find the table's relation, named DimensionAttributeValueCombination, and3.
change its property, as follows:

Property Value

UseDefaultRoleNames No

In the project, add the LedgerParameters form and declare the following4.
variables in class declaration:

       MainAccountRecId         currentMainAccountId;
       MainAccountRecId         previousMainAccountId;
       MainAccountRecId         currentOffsetMainAccountId;
       DimensionAttributeRecId  mainAccountDimAttr;
       LedgerJournalEngine      ledgerJournalEngine;

In the same form, find the General_LedgerDimension segmented entry control5.
by going to Tab | LedgerTab | LedgerTabFastTab | GeneralTabPage | General,
and then change the field properties:

Property Value

Auto Declaration Yes

Controller class DimensionDynamicAccountController

Include Financial accounts Yes

Is default account False

Now override three of its methods with the following code snippet:6.

        public void onSegmentChanged(DimensionControlSegment _segment)
        {
           if (_segment.parmDimensionAttribute().RecId ==
           mainAccountDimAttr)
            {
               previousMainAccountId = currentMainAccountId;
            }
           super(_segment);
           ledgerJournalEngine =
           LedgerJournalEngine::construct(LedgerJournalType::Daily,
           element);
           ledgerJournalEngine.ledgerJournalTable
            (element.args().record());
        }



Processing Business Tasks

[ 226 ]

Add the following lines of code at the bottom of the form's init() method7.
before super():

        mainAccountDimAttr =
        DimensionAttribute::getWellKnownDimensionAttribute
        (DimensionAttributeType::MainAccount);

In the active() method of datasource LedgerParameters, add the8.
following line of code:

        currentMainAccountId =
        MainAccount::getMainAccountRecIdFromLedgerDimension
        (LedgerParameters.LedgerDimension);
        previousMainAccountId = currentMainAccountId;

Add the DimensionHierarchyHelper class to the project and add a few lines of9.
code in the getHierarchyTypeByAccountType()method at line number 442
under case enumNum(LedgerJournalACType):

        default :
        return  DimensionHierarchyType::AccountStructure;

To test the results, navigate to General ledger | Setup | General ledger10.
parameters and notice the newly created Ledger account control, which allows
you to select and save the main account and a number of financial dimensions, as
shown in the following screenshot:



Processing Business Tasks

[ 227 ]

How it works...
We start the recipe by creating a new field in the LedgerParameters table. The field
extends the LedgerDimensionAccount extended data type in order to ensure that the
segmented entry control appears automatically, once this field is added to the user
interface. We also add the newly created field to one of the table's groups in order to make
sure that it appears on the form automatically.

Next, we have to modify the LedgerParameters form. In its class declaration and the
init() method, we define and instantiate the LedgerDimensionAccountController
class, which handles the events raised by the segmented entry control. The combination of
the class and the control allows the user to see a dynamic number of segments, based on the
system configuration.

Then, we override the following methods in the control:

loadAutoCompleteData(): This retrieves the autocompleted data
loadSegments(): This loads the value stored in the table field into the control
segmentedValueChanged(): This updates the controller class when the value of
the control is changed by the user

Lastly, we override the following methods in the data source field:

resolveReference(): This finds the ledger account record specified by the user
jumpRef(): This enables the View details link in the control's right-click context
menu
validate(): This performs user input validation

There's more...
In this section, we will discuss how the input of the segmented entry control can be
simulated from the code. It is very useful when migrating or importing data into the
system. In the Dynamics Project, add the DimensionAttributeValueCombination table
and create a new method with the following code snippet:

    public static LedgerDimensionAccount getLedgerDimension(
    MainAccountNum _mainAccountId,
    container      _dimensions,
    container      _values)
  {
     MainAccount                    mainAccount;



Processing Business Tasks

[ 228 ]

     DimensionHierarchy             dimHier;
     LedgerStructure                ledgerStruct;
     Map                            dimSpec;
     Name                           dimName;
     Name                           dimValue;
     DimensionAttribute             dimAttr;
     DimensionAttributeValue        dimAttrValue;
     List                           dimSources;
     DimensionDefaultingEngine      dimEng;
     int                            i;
     mainAccount = MainAccount::findByMainAccountId(
      _mainAccountId);
    if (!mainAccount.RecId)
    {
       return 0;
    }
    select firstOnly RecId from dimHier
    where dimHier.StructureType ==
    DimensionHierarchyType::AccountStructure
    && dimHier.IsDraft == NoYes::No
    exists join ledgerStruct
    where ledgerStruct.Ledger == Ledger::current()
    && ledgerStruct.DimensionHierarchy == dimHier.RecId;
    if (!dimHier.RecId)
    {
       return 0;
    }
     dimSpec =
     DimensionDefaultingEngine::createEmptyDimensionSpecifiers();
     for (i = 1; i <= conLen(_dimensions); i++)
    {
       dimName = conPeek(_dimensions, i);
       dimValue = conPeek(_values, i);
       dimAttr = DimensionAttribute::findByName(dimName);
      if (!dimAttr.RecId)
      {
          continue;
      }
        dimAttrValue =
        DimensionAttributeValue::findByDimensionAttributeAndValue(
        dimAttr, dimValue, false, true);
        if (dimAttrValue.IsDeleted)
        {
           continue;
        }
        DimensionDefaultingEngine::insertDimensionSpecifer(
        dimSpec,
        dimAttr.RecId,



Processing Business Tasks

[ 229 ]

        dimValue,
        dimAttrValue.RecId,
        dimAttrValue.HashKey);
    }
      dimSources = new List(Types::Class);
      dimSources.addEnd(dimSpec);
      dimEng = DimensionDefaultingEngine::constructForMainAccountId(
      mainAccount.RecId,
      dimHier.RecId);
      dimEng.applyDimensionSources(dimSources);
      return dimEng.getLedgerDimension();
  }

This method can be used to convert a combination of main accounts and a number of
financial dimension values into a ledger account. The method accepts the following three
arguments:

The main account number
A container of dimension names
A container of dimension values

We start this method by searching for the main account record. We also locate the record of
the hierarchy of the current chart of accounts.

Next, we fill an empty map with the dimension values. Before inserting each value, we
check whether the dimension and its value are present in the system. To do this, we use the
methods in the DimensionAttribute and DimensionAttributeValue tables to do.

We end the method by creating a new DimensionDefaultingEngine object and passing
the list of dimensions and their values to it. Now, when everything is ready, the
getLedgerDimension() method of DimensionDefaultingEngine returns the ledger
account number.

See also
The Creating a general journal recipe
The Creating and posting a ledger voucher recipe



Processing Business Tasks

[ 230 ]

Creating a general journal
Journals in Dynamics 365 for Finance and Operations are manual worksheets that can be
posted into the system. One of the frequently used journals for financial operations is the
general journal. It allows the virtual processing of any type of posting: ledger account
transfers, fixed asset operations, customer/vendor payments, bank operations, project
expenses, and so on. Journals, such as the fixed assets journal, payment journal in
Accounts receivable or Accounts payable, and many others, are optimized for specific
business tasks, but they basically do the same job.

In this recipe, we will demonstrate how to create a new general journal record from the
code. The journal will hold a single line for debiting one ledger account and crediting
another one. For demonstration purposes, we will specify all the input values in the code.

How to do it...
Carry out the following steps in order to complete this recipe:

Create a new Dynamics 365 solution named CreateGeneralJournal. Change1.
the model name in properties with the one created earlier.
In the project, create a new class named LedgerJournalTransData with the2.
following code snippet:

        public class LedgerJournalTransData extends JournalTransData
       {
       }
        public void create(
        boolean _doInsert        = false,
        boolean _initVoucherList = true)
      {
        lastLineNum++;
        journalTrans.LineNum = lastLineNum;
       if (journalTableData.journalVoucherNum())
        {
           this.initVoucher(
            lastVoucher,
             false,
             _initVoucherList);
        }
          this.addTotal(false, false);
         if (_doInsert)
         {
           journalTrans.doInsert();



Processing Business Tasks

[ 231 ]

         }
         else
        {
           journalTrans.insert();
        }
        if (journalTableData.journalVoucherNum())
        {
          lastVoucher = journalTrans.Voucher;
        }
      }

Add the LedgerJournalStatic class in your project and replace its3.
newJournalTransData() method with the following code snippet:

        JournalTransData newJournalTransData(
         JournalTransMap  _journalTrans,
          JournalTableData _journalTableData)
      {
         return new LedgerJournalTransData(
          _journalTrans,
           _journalTableData);
      }

Create a new class named GetLedgerDimension with the following code4.
snippet:

        class GetLedgerDimension
       {
          public static LedgerDimensionAccount  getLedgerDimension(
           MainAccountNum _mainAccountId,
            container      _dimensions,
             container      _values)
         {
            MainAccount                    mainAccount;
            DimensionHierarchy             dimHier;
            LedgerStructure                ledgerStruct;
            Map                            dimSpec;
            Name                           dimName;
            Name                           dimValue;
            DimensionAttribute             dimAttr;
            DimensionAttributeValue        dimAttrValue;
            List                           dimSources;
            LedgerDimensionDefaultingEngine      dimEng;
            int                            i;
            mainAccount = MainAccount::findByMainAccountId(
            _mainAccountId);
           if (!mainAccount.RecId)



Processing Business Tasks

[ 232 ]

           {
              return 0;
           }
           select firstOnly RecId from dimHier
           where dimHier.StructureType ==
           DimensionHierarchyType::AccountStructure
           && dimHier.IsDraft == NoYes::No
           exists join ledgerStruct
           where ledgerStruct.Ledger == Ledger::current()
           && ledgerStruct.DimensionHierarchy ==  dimHier.RecId;
          if (!dimHier.RecId)
          {
             return 0;
          }
           dimSpec = LedgerDimensionDefaultingEngine::
            createEmptyDimensionSpecifiers();
           for (i = 1; i <= conLen(_dimensions); i++)
          {
             dimName = conPeek(_dimensions, i);
             dimValue = conPeek(_values, i);
             dimAttr = DimensionAttribute::findByName(dimName);
            if (!dimAttr.RecId)
           {
              continue;
           }
            dimAttrValue =
            DimensionAttributeValue::findByDimensionAttributeAndValue(
            dimAttr, dimValue, false, true);
           if (dimAttrValue.IsDeleted)
           {
              continue;
           }
            LedgerDimensionDefaultingEngine::insertDimensionSpecifer(
            dimSpec,
            dimAttr.RecId,
            dimValue,
            dimAttrValue.RecId,
            dimAttrValue.HashKey);
          }
           dimSources = new List(Types::Class);
           dimSources.addEnd(dimSpec);
           dimEng = LedgerDimensionDefaultingEngine::
            constructForMainAccountId(
             mainAccount.RecId,
              dimHier.RecId);
           dimEng.applyDimensionSources(dimSources);
           return dimEng.getLedgerDimension();
         }



Processing Business Tasks

[ 233 ]

       }

Create another class named LedgerJournalCreate with the following code5.
snippet:

       class LedgerJournalCreate
      {
         public static void Main(Args _args)
       {
          LedgerJournalTable      jourTable;
          LedgerJournalTrans      jourTrans;
          LedgerJournalTableData  jourTableData;
          LedgerJournalTransData  jourTransData;
          LedgerJournalStatic     jourStatic;
          DimensionDynamicAccount ledgerDim;
          DimensionDynamicAccount offsetLedgerDim;
          ttsBegin;
          ledgerDim =
           GetLedgerDimension::getLedgerDimension(
            '110180',
             ['BusinessUnit', 'Department'],
              ['005', '024']);
          offsetLedgerDim =
          GetLedgerDimension::getLedgerDimension(
           '170150',
            [' BusinessUnit', 'Department'],
             ['005', '024']);
          jourTableData = JournalTableData::newTable(jourTable);
          jourTable.JournalNum = jourTableData.nextJournalId();
          jourTable.JournalType = LedgerJournalType::Daily;
          jourTable.JournalName = 'GenJrn';
          jourTableData.initFromJournalName(
           LedgerJournalName::find(jourTable.JournalName));
          jourStatic    = jourTableData.journalStatic();
          jourTransData = jourStatic.newJournalTransData(
           jourTrans,
            jourTableData);
          jourTransData.initFromJournalTable();
          jourTrans.CurrencyCode          = 'USD';
          jourTrans.initValue();
          jourTrans.TransDate             = systemDateGet();
          jourTrans.LedgerDimension       = ledgerDim;
          jourTrans.Txt                   = 'General journal demo';
          jourTrans.OffsetLedgerDimension = offsetLedgerDim;
          jourTrans.AmountCurDebit        = 1000;
          jourTransData.create();
          jourTable.insert();
          ttsCommit;



Processing Business Tasks

[ 234 ]

          info(strFmt(
          "Journal '%1' has been created", jourTable.JournalNum));
       }
      }

Save all your code and set this class as set as start up object. Now, run the6.
project and you will get the following message:

Now check the results by navigating to General ledger | Journal entries |7.
General journals, as shown in the following screenshot:

Click on the Lines button to open journal lines and notice the created line, as8.
shown in the following screenshot:



Processing Business Tasks

[ 235 ]

How it works...
We start the recipe by creating the LedgerJournalTransData class, which will handle the
creation of journal lines. It inherits everything from the JournalTransData class, apart
from its create() method. Actually, this method is a copy of the same method from the
JournalTransData class, with the exception that it does not contain the code that is not
relevant to the ledger journal creation. We also modify the newJournalTransData()
constructor of the LedgerJournalStatic class to use our newly created class.

The journal creation code is placed in a new job. We start the code by initializing ledger
dimensions. Here, we use the getLedgerDimension() method from the previous recipe to
get ledger dimensions. This method accepts three parameters: the main account number, a
container of dimension names, and a container of dimension values. In this example, the
ledger dimensions consist of the main account, business unit, and department, and its value
is 110180-005-024. Use your own values depending on the data you have.

We also create a new jourTableData object that is used for journal record handling. Then,
we set the journal number, type, and name and call the initFromJournalName() method
to initialize some additional values from the journal name settings. At this stage, the journal
header record is ready.

Next, we create a journal line. We create a new jourTransData object to handle the journal
line, and we call its initFromJournalTable() method to initialize additional values from
the journal header. Then, we set some of the journal line values, such as the currency and
transaction date.

Finally, we call the create() method on the jourTransData object and the insert()
method on the jourTable object to create the journal line and header records, respectively.
The journal is now ready to be reviewed.

There's more
The preceding example can be easily modified to create different journals, not just the
general journal. For instance, the payment journal in the Accounts payable module is
based on the same data sources as the general journal and some of its code is the same. So,
let's create a new, similar job named VendPaymJournalCreate with the following code
snippet:

    class VendPaymJournalCreate
   {
      public static void Main(Args _args)



Processing Business Tasks

[ 236 ]

     {
        LedgerJournalTable      jourTable;
        LedgerJournalTrans      jourTrans;
        LedgerJournalTableData  jourTableData;
        LedgerJournalTransData  jourTransData;
        LedgerJournalStatic     jourStatic;
        DimensionDynamicAccount ledgerDim;
        DimensionDynamicAccount offsetLedgerDim;
        ttsBegin;
        ledgerDim = LedgerDynamicAccountHelper:
         :getDynamicAccountFromAccountNumber('1001',
          LedgerJournalACType::Vend);
        LedgerJournalACType::Vend);
        offsetLedgerDim = LedgerDynamicAccountHelper:
         :getDynamicAccountFromAccountNumber(
          'USMF OPER',
           LedgerJournalACType::Bank);
        //Journal header data
        jourTableData = JournalTableData::newTable(jourTable);
        jourTable.JournalNum  = jourTableData.nextJournalId();
        jourTable.JournalType = LedgerJournalType::Payment;
        jourTable.JournalName = 'VendPay';
        jourTableData.initFromJournalName(
         LedgerJournalName::find(jourTable.JournalName));
        jourStatic    = jourTableData.journalStatic();
        //Journal line data
        jourTransData = jourStatic.newJournalTransData(
         jourTrans,
          jourTableData);
        jourTransData.initFromJournalTable();
        jourTrans.CurrencyCode    = 'USD';
        jourTrans.initValue();
        jourTrans.TransDate       = systemDateGet();
        jourTrans.AccountType     = LedgerJournalACType::Vend;
        jourTrans.LedgerDimension = ledgerDim;
        jourTrans.Txt             = 'Vendor payment journal   demo';
        jourTrans.OffsetAccountType     = LedgerJournalACType::Bank;
        jourTrans.OffsetLedgerDimension = offsetLedgerDim;
        jourTrans.AmountCurDebit        = 1000;
        jourTransData.create();
        jourTable.insert();
        ttsCommit;
        info(strFmt(
         "Journal '%1' has been created", jourTable.JournalNum));
     }
   }



Processing Business Tasks

[ 237 ]

When you run your code, your output will look as follows:

Now, the newly created journal can be found by navigating to Accounts payable | Journals
| Payments | Payment journal, as shown here:

The journal's lines should reflect what we've specified in the code, as shown in the
following screenshot:



Processing Business Tasks

[ 238 ]

The code in this section has only slight differences compared to the previous example, as
follows:

The ledger dimension contains a reference to a vendor account, and the offset
ledger dimension refers to a bank account record
The journal type is changed to a vendor disbursement, that is,
LedgerJournalType::Payment

The journal name to be matched with the payment journal configuration is
different
The journal line account type is set to vendor, and the offset account type is set to
bank

See also
The Using a segmented entry control recipe
The Posting a general journal recipe

Posting a general journal
Journal posting is the next step once the journal has been created. Although most of the
time journals are posted from the user interface, it is also possible to perform the same 
operation from the code.

In this recipe, we will explore how a general journal can be posted from the code. We are
going to process the journal created in the previous recipe.

How to do it...
Carry out the following steps in order to complete this recipe:

Navigate to General ledger | Journals | General journal and find an open1.
journal. Create a new journal if none exists. Note the journal's number.



Processing Business Tasks

[ 239 ]

In your solution, add a new runnable class named LedgerJournalPost with the2.
following code snippet (replace the 00472 text with the journal's number from
the previous step):

        static void LedgerJournalPost(Args _args)
       {
          LedgerJournalCheckPost LedgerJournalCheckPost;
          LedgerJournalTable     LedgerJournalTable;

          LedgerJournalTable = LedgerJournalTable::find('00472');
          LedgerJournalCheckPost=
           LedgerJournalCheckPost::newLedgerJournalTable(
            jourTable,
             NoYes::Yes);

          LedgerJournalCheckPost.run();
       }

Save all your code and build your solution.3.
Now, test set this class as a startup object, run the solution, and notice the Infolog4.
window, confirming that the journal was successfully posted, as shown here:



Processing Business Tasks

[ 240 ]

Navigate to General ledger | Journals | General journal and locate the journal5.
in order to make sure that it was posted, as shown in the following screenshot:

How it works...
In this recipe, we created a new job named LedgerGeneralJournalPost, which holds all
the code. Here, we use the LedgerJournalCheckPost class, which does all the work. This
class ensures that all the necessary validations are performed. It also locks the journal so
that no user can access it from the user interface.

In the job, we create the jourPost object by calling the newLedgerJournalTable()
constructor on the LedgerJournalCheckPost class. This method accepts a journal header
record to be processed and a second argument, defining whether the journal should be
validated and posted or only validated. In this recipe, we find the previously created
journal record and pass it to the LedgerJournalCheckPost class along with the second
argument, instructing it to perform both validation and posting.

See also
The Creating a general journal recipe



Processing Business Tasks

[ 241 ]

Processing a project journal
As with most of the modules in Dynamics 365 for Finance and Operations, the Project
management and accounting module contain several journals, such as hour, expense, fee,
and item. Although they are similar to the general journal, they provide a more convenient
user interface to work with projects and contain some module-specific features.

In this recipe, we will create and post a project journal from the code. We will process an
hour journal, holding a registered employee's time.

How to do it...
Carry out the following steps in order to complete this recipe:

Create a new project ProcessProjectJournal, and assign our custom model to1.
it.
Create a new class named ProjJournalCreate with the following code snippet2.
(replace the input values in the code to match your data):

         class ProjJournalCreate
        {
          public static void Main(Args _args)
         {
            ProjJournalTable     jourTable;
            ProjJournalTrans     jourTrans;
            ProjJournalTableData jourTableData;
            ProjJournalTransData jourTransData;
            ProjJournalStatic    jourStatic;
            ttsBegin;
            jourTableData = JournalTableData::newTable(jourTable);
            jourTable.JournalId     = jourTableData.nextJournalId();
            jourTable.JournalType   = ProjJournalType::Hour;
            jourTable.JournalNameId = 'Hours';
            jourTableData.initFromJournalName(
             ProjJournalName::find(jourTable.JournalNameId));
            jourStatic = jourTableData.journalStatic();
            jourTransData = jourStatic.newJournalTransData(
             jourTrans,
              jourTableData);
            jourTransData.initFromJournalTable();
            jourTrans.initValue();
            jourTrans.ProjId = '00000007';
            jourTrans.initFromProjTable(
             ProjTable::find(jourTrans.ProjId));



Processing Business Tasks

[ 242 ]

            jourTrans.TransDate     = systemDateGet();
            jourTrans.ProjTransDate = jourTrans.TransDate;
            jourTrans.CategoryId = 'Taxi';
            jourTrans.setHourCostPrice();
            jourTrans.setHourSalesPrice();
            jourTrans.TaxItemGroupId =
            ProjCategory::find(jourTrans.CategoryId).TaxItemGroupId;
            jourTrans.DEL_Worker =
             HcmWorker::findByPersonnelNumber('000062').RecId;
            jourTrans.Txt = 'Taxi fare reimbursement';
            jourTrans.Qty = 8;
            jourTransData.create();
            jourTable.insert();
            ttsCommit;
            info(strFmt(
            "Journal '%1' has been created", jourTable.JournalId));
         }
        }

Execute the class and check the results by navigating to Project management and3.
accounting | Journals | Hour, as shown in the following screenshot:

Click on the Lines button to open journal lines and notice the newly created4.
record, as shown in the following screenshot:



Processing Business Tasks

[ 243 ]

How it works...
In this recipe, we create a new job where we store all the code. In the job, we use the
ProjJournalTableData and ProjJournalTransData classes in a way similar to how we
used the LedgerJournalTableData and LedgerJournalTransData classes in the
Creating a general journal recipe. Here, we create a new jourTableData object used for
journal record handling. Then, we initialize the journal number, type, and name of the
actual journal record. For demonstration purposes, we set the journal name in the code, but
it can be easily replaced with a value from some parameter. Next, we call
initFromJournalName() on the jourTableData object in order to initialize some
additional values from the journal name settings. At this stage, the journal header record is
ready.

Next, we create a journal line. Here, we first create a new jourTransData object to handle
the journal line. Then, we call its initFromJournalTable() method in order to initialize
the additional values from the journal header. Finally, we set some of the journal line
values, such as transaction and project date, category, and worker number. Normally,
these values have to be taken from the user input, external data, or any other source,
depending on the functionality being built. In this example, we simply specify the values in
the code.

Lastly, we call the create() method on jourTransData and the insert() method on
jourTable to create the journal line and the header records, respectively. The journal is
now ready to be reviewed.



Processing Business Tasks

[ 244 ]

There's more...
For further journal processing, we can use the class named ProjJournalCheckPost to
post project journals from the code. In the Dynamics project, let's create another class
named ProjJournalPost with the following code snippet (replace PJJ_000013 with your
journal number):

    class ProjJournalPost
   {
      public static void Main(Args _args)
     {
        ProjJournalCheckPost jourPost;
        jourPost =   ProjJournalCheckPost::newJournalCheckPost(
        true,
        true,
        JournalCheckPostType::Post,
        tableNum(ProjJournalTable),
        'PJJ_000013');
        jourPost.run();
     }
   }

Run the job to post the journal. The Infolog window should display the confirmation, as
shown here:

In the newly created job, we use the newJournalCheckPost() constructor of the
ProjJournalCheckPost class. The constructor accepts the following arguments:

A Boolean value that specifies whether to block the journal while it is being
posted or not. It is a good practice to set the value to true, as this ensures that no
one modifies this journal while it is being posted.
A Boolean value that specifies whether to display results in the Infolog window.



Processing Business Tasks

[ 245 ]

The type of action being performed. The possible values for this class are either
Post or Check. The latter one only validates the journal, and the first one
validates and posts the journal at once.
The table ID of the journal being posted.
The journal number to be posted.
Finally, we call the run() method, which posts the journal.

Creating and posting a ledger voucher
In Dynamics 365 for Finance and Operations, all the financial transactions, regardless of
where they are originated, end up in the General ledger module. When it comes to
customized functionality, developers should use the Dynamics 365 APIs to create the
required system entries. No transactions can be created directly in the tables, as this may
affect the accuracy of financial data.

In order to ensure data consistency, the system provides numerous APIs for developers to
use. One of them is ledger voucher processing. This allows you to post a financial voucher
in the General ledger module. Vouchers in Dynamics 365 for Finance and Operations are
balanced financial entries that represent a single operation. They include two or more
ledger transactions. The ledger voucher API ensures that all the mandatory fields, such as
voucher numbers, ledger accounts, offset account, financial dimensions, balances, and
others, are filled and valid.

In this recipe, we will demonstrate how a ledger voucher can be created and posted from
the code. We will create a single voucher with two balancing transactions.

How to do it...
Carry out the following steps in order to complete this recipe:

Double-check whether the getLedgerDimension() method exists in the1.
DimensionAttributeValueCombination table. If not, create it as described in
the first recipe of this chapter.

In the solution, create a new job named LedgerVoucherPost with the following2.
code snippet:

          class PacktLedgerVoucherPost
         {



Processing Business Tasks

[ 246 ]

            public static void Main(Args _args)
           {
              LedgerVoucher            LedgerVoucher;
              LedgerVoucherObject      voucherObj;
              LedgerVoucherTransObject voucherTrObj1;
              LedgerVoucherTransObject voucherTrObj2;
              DimensionDynamicAccount  ledgerDim;
              DimensionDynamicAccount  offsetLedgerDim;
              CurrencyExchangeHelper   currencyExchHelper;
              CompanyInfo              companyInfo;
              ledgerDim =
               GetLedgerDimension::getLedgerDimension(
               '110180',
                ['BusinessUnit', 'Department'],
                 ['005', '024']);
              offsetLedgerDim =
               GetLedgerDimension::getLedgerDimension(
               '170150',
                ['BusinessUnit', 'Department'],
                 ['005', '024']);
              LedgerVoucher  = LedgerVoucher::newLedgerPost(
               DetailSummary::Detail,
                SysModule::Ledger,
                 '');
              voucherObj = LedgerVoucherObject:
               :newVoucher('TEST00001');
              companyInfo = CompanyInfo::findDataArea(curext());
              currencyExchHelper =
               CurrencyExchangeHelper::newExchangeDate(
              Ledger::primaryLedger(companyInfo.RecId),
              voucherObj.parmAccountingDate());
              LedgerVoucher.addVoucher(voucherObj);
              voucherTrObj1 =
              LedgerVoucherTransObject::newTransactionAmountDefault(
               voucherObj,
                LedgerPostingType::LedgerJournal,
                 ledgerDim,
                 'USD',
                  1000,
                   currencyExchHelper);
              voucherTrObj2 =
              LedgerVoucherTransObject::newTransactionAmountDefault(
               voucherObj,
                LedgerPostingType::LedgerJournal,
                 offsetLedgerDim,
                  'USD',
                   -1000,
                    currencyExchHelper);



Processing Business Tasks

[ 247 ]

              LedgerVoucher.addTrans(voucherTrObj1);
              LedgerVoucher.addTrans(voucherTrObj2);
              LedgerVoucher.end();
              info(strFmt(
               "Voucher '%1' has been posted", voucher.lastVoucher()));
           }
         }

Run the class to create a new ledger voucher, as shown in the following3.
screenshot:

To check what has been posted, navigate to General Ledger | Inquiries |4.
Voucher transactions and type in the voucher number used in the code, as
shown in the following screenshot:



Processing Business Tasks

[ 248 ]

Click on OK to display the posted voucher:5.

How it works...
In the newly created job, we first define the ledger accounts where the posting will be done.
Normally, this comes from the user input, but for demonstration purposes, here we have
specified it in the code. We use the previously created getLedgerDimension() method to
simulate the ledger account entry.

Next, we create a new LedgerVoucher object, which represents a collection of vouchers.
Here, we call the newLedgerPost() constructor of the LedgerVoucher class. The
newLedgerPost() constructor accepts three mandatory and four optional arguments,
which are listed as follows:

Post detailed or summarized ledger transactions.
The system module from which the transactions originate.
A number sequence code, which is used to generate the voucher number. In this
example, we will set the voucher number manually. So, this argument can be left
empty.
The transaction type that will appear in the transaction log.
The transaction text.



Processing Business Tasks

[ 249 ]

A Boolean value, which specifies whether this voucher should meet the approval
requirements.
A Boolean value, defining whether the voucher can be posted without a posting
type when posting inventory transactions.

Then, we create a new LedgerVoucherObject object, which represents a single voucher.
We call the newVoucher() constructor of the LedgerVoucherObject class. It accepts only
one mandatory parameter and a number of optional parameters, which are listed as follows:

The voucher number; normally, this should be generated using a number
sequence, but in this example, we set it manually
The transaction date; the default is the session date
The system module from which the transactions originate
The ledger transaction type
A flag defining whether this is a correcting voucher; the default is No
The posting layer; the default is Current
The document number
The document date
The acknowledgement date
The addVoucher() method of the LedgerVoucher class adds the created
voucher object to the voucher

Once the voucher is ready, we create two voucher transactions. The transactions are
handled by the LedgerVoucherTransObject class. They are created by calling its
newTransactionAmountDefault() constructor with the following mandatory arguments:

The ledger voucher object
The ledger posting type
The ledger account number
The currency code
The amount in the currency
The currency exchange rate helper



Processing Business Tasks

[ 250 ]

Notice the last argument, which is a currency exchange rate helper, used when operating in
currencies other than the main company currency.

We add the created transaction objects to the voucher by calling its addTrans() method. At
this stage, everything is ready for posting.

Finally, we call the end() method on the LedgerVoucher object, which posts the
transactions to the ledger.

See also
The Using a segmented entry control recipe

Changing an automatic transaction text
Every financial transaction in Dynamics 365 for Finance and Operations must have a
descriptive text. Some texts are entered by users and some can be generated by the system.
The latter option holds true for automatically generated transactions, where the user cannot
interact with the process.

Dynamics 365 for Finance and Operations provides a way to define texts for automatically
generated transactions. The setup can be found by navigating to Organizations
administration | Setup | Default descriptions. Here, the user can create custom
transaction texts for various automatic transaction types and languages. The text itself can
have a number of placeholders--digits with a percent sign in front of them, which are
replaced with actual values during the process. Placeholders can be from %1 to %6, and they
can be substituted with the following values:

%1: This is the transaction date
%2: This is a relevant number, such as the invoice and delivery note
%3: This is the voucher number
%4 to %6: This is custom and depends on the module



Processing Business Tasks

[ 251 ]

In this recipe, we will demonstrate how the existing automatic transaction text functionality
can be modified and extended. One of the places where it is used is the automatic creation
of vendor payment journal lines, during the vendor payment proposal process. We will
modify the system so that the texts of the automatically-generated vendor payment lines
include the vendor names.

Getting ready
First, we need to make sure that the vendor payment transaction text is set up properly.
Navigate to Organization administration | Setup | Default descriptions, find a line with
Vendor - payment, vendor, (if this record is not there, you can create a new one), and
change the text to Vendor payment %2 to %5, as shown in the following screenshot:

How to do it...
Carry out the following steps in order to complete this recipe:

Add the CustVendPaymProposalTransferToJournal class to your project and1.
add the following lines of code at the bottom of the getTransactionText()
method, right before its return:

        transactionTxt.setKey2(
         _custVendPaymProposalLine.custVendTable().name());



Processing Business Tasks

[ 252 ]

Navigate to Accounts payable | Payments | Payment journal and create a new2.
journal. Open journal lines, run Create payment proposal, which is under
Payment proposal, from the action pane. Define the desired criteria or leave the
field blank and click on OK. In the newly opened Vendor payment proposal
form, click on the Create Payment button to transfer all the proposed lines to the
journal. See the following screenshot:

Notice that the transaction text in each journal line includes the vendor name, as3.
shown in the following screenshot:



Processing Business Tasks

[ 253 ]

How it works...
The vendor payment proposal uses the CustVendPaymProposalTransferToJournal
class to create the lines. The same class contains a method named getTransactionText(),
which is responsible for formatting the text in each line. If we look inside it, we can see that
the TransactionTxt class is used for this purpose. This class contains the following
methods, which are used to substitute the placeholders from %1 to %6 in the defined text:

%1: setDate()
%2: setFormLetter()
%3: setVoucher()
%4: setKey1()
%5: setKey2()
%6: setKey3()

By taking a look at the code, you can see that only the %4 placeholder is used. So, you can
fill the %5 placeholder with the vendor name. To achieve this, you need to call the
setKey2() method with the vendor name as an argument. In this way, every journal line
created by the automatic vendor payment proposal will contain a vendor name in its
description.

There's more...
In standard application, we have limited placeholders, as shown in the following
screenshot:



Processing Business Tasks

[ 254 ]

If more than three custom placeholders are required, it is always possible to add an
additional placeholder, by creating a new setKey() method in the TransactionTxt class.
For example, if we want to add a %7 placeholder, we have to do the following:

Add the following line of code to the class declaration of the TransactionTxt1.
class:

        str 20 key4;

Create a new method with the following code snippet:2.

        void setKey4(str 20 _key4)
        {
           key4 = _key4;
        }

Change the last line of the txt() method to the following:3.

        return strFmt(
          txt,
          date2StrUsr(transDate, DateFlags::FormatAll),
          formLetterNum,
          voucherNum,
          key1,
          key2,
          key3,
          key4);

Now, we can use the setKey4() method to substitute the %7 placeholder.4.

Note that, although more placeholders can be added, you should take into consideration the
fact that the transaction text field has a finite number of characters and excessive text will
simply be truncated.

Creating a purchase order
Purchase orders are used throughout the purchasing process to hold information about the
goods or services that a company buys from its suppliers. Normally, purchase orders are
created from the user interface, but in automated processes, purchase orders can be also
created from the code.



Processing Business Tasks

[ 255 ]

In this recipe, you will learn how to create a purchase order from the code. We will use a
standard method provided by the application.

How to do it...
Carry out the following steps in order to complete this recipe:

Add a new runnable class named CreatePurchOrder with the following code1.
snippet:

        static void PktCreatePurchOrder(Args _args)
       {
          NumberSeq  numberSeq;
          PurchTable purchTable;
          PurchLine  purchLine;

          ttsBegin;
          //initialize number sequence objects
          numberSeq = NumberSeq::newGetNum(
           PurchParameters::numRefPurchId());
            numberSeq.used();
          purchTable.PurchId = numberSeq.num();
          purchTable.initValue();
          //Initialize new record in PurchTable using vendor account
          purchTable.initFromVendTable(VendTable::find('vend001'));
          if (!purchTable.validateWrite())
         {
            throw Exception::Error;
         }
          purchTable.insert();
          //insert purchase line
          purchLine.PurchId = purchTable.PurchId;
          purchLine.ItemId  = 'item001';
          purchLine.createLine(true, true, true, true, true, true);
          ttsCommit;
          info(strFmt("New Purchase order '%1' has been created",
          purchTable.PurchId));
       }

Save and build your code and select this class as set as startup object. Now run2.
the project to create a new purchase order.



Processing Business Tasks

[ 256 ]

Navigate to Procurement and sourcing | Common | Purchase orders | All3.
purchase orders in order to view the purchase order created, as shown in the
following screenshot:

How it works...
In this recipe, we created a new job named CreatePurchOrder, which holds all the code.
Here, we start by getting the next purchase order number with the help of the NumberSeq
class. We also call the initValue() and initFromVendTable() methods to initialize
various purchTable buffer fields. Normally, the argument of the initFromVendTable()
method should come from a user selection screen or some other source, but for
demonstration purposes, we specify the value in the code. We insert the purchase order
record into the table only if the validation in the validateWrite() method is successful.

Next, we create purchase order lines. Here, we assign the previously used purchase order
number and then set the item number. As previously mentioned, such values should come
from a user input or some other source, but for demonstration purposes, we specify it in the
code.



Processing Business Tasks

[ 257 ]

Finally, we call the createLine() method of the PurchLine table to create a new line.
This is a very useful method, allowing you to quickly create purchase order lines. This
method accepts a number of optional Boolean arguments, which are listed as follows:

Perform data validations before saving; the default is false
Initialize the line record from the PurchTable table; the default is false
Initialize the line record from the InventTable table; the default is false
Calculate inventory quantity; the default is false
Add miscellaneous charges; the default is true
Use trade agreements to calculate the item price; the default is false
Do not copy the inventory site and warehouse from the purchase order header;
the default is false
Use purchase agreements to get the item price; the default is false

There's more...
You can also use the data entities, to insert Purchase Order Header and Line records. To
insert purchase order header, use the PurchPurchaseOrderHeaderEntity entity and for
Purchase Order Line data use the PurchPurchaseOrderLineEntity data entity.

In the preceding code sample, we used a few methods to set some mandatory values in
PurchTable and PurchLine. Until you find similar methods in these entities, you may
have to assign all mandatory values manually.

Posting a purchase order
In Dynamics 365 for Finance and Operations, the purchase order goes through a number of
statuses in order to reflect its current position within the purchasing process. The status can
be updated either manually by using the user interface or programmatically from the code
as well.

In this recipe, we will demonstrate how a purchase order status can be updated from the
code. We will confirm the purchase order created in the previous recipe and print the
relevant document on the screen.



Processing Business Tasks

[ 258 ]

How to do it...
Carry out the following steps in order to complete this recipe:

Add a new runnable class, named ConfirmPurchOrder with the following code1.
snippet. Replace 00000044 with your number, that is created after previous code
CreatePurchOrder (your PO number could be different from mine so double-
check):

        static void ConfirmPurchOrder (Args _args)
       {
          PurchFormLetter purchFormLetter;
          PurchTable      purchTable;
          purchTable = PurchTable::find('00000044');
          purchFormLetter = PurchFormLetter::construct(
           DocumentStatus::PurchaseOrder);
          purchFormLetter.update(
           purchTable,
          '',
          DateTimeUtil::date(DateTimeUtil::utcNow()),
          PurchUpdate::All,
          AccountOrder::None,
          NoYes::No,
          NoYes::Yes);
       }

Save and build your code and select this class as set as startup object. Now, run2.
the project to post the specified purchase order.
Navigate to Procurement and sourcing | Common | Purchase orders | All3.
purchase orders and note that the Approval status column of the posted order is
now different, as shown here:



Processing Business Tasks

[ 259 ]

How it works...
In this recipe, we create a new job named ConfirmPurchOrder, which holds all the code.

First, we find a purchase order, which we are going to update. In this recipe, we use the
purchase order created in the previous recipe. Here, we will normally replace the code with
a user input or an output from some other function.

Next, we create a new PurchFormLetter object using its construct() constructor. The
constructor accepts an argument of the DocumentStatus type, which defines the type of
posting to be done. Here, we use DocumentStatus::PurchaseOrder as a value, as we
want to confirm the purchase order.

The last thing to do is to call the update() method of the PurchFormLetter object, which
does the actual posting. It accepts a number of arguments, which are listed as follows:

The purchase order header record; in this case, it is the PurchTable table.
An external document number; it's not used in this demonstration, as it is not
required when posting a purchase order confirmation.
The transaction date; the default date is the system's date.
The quantity to be posted; the default is PurchUpdate::All. Other options, such
as PurchUpdate::PackingSlip or PurchUpdate::ReceiveNow, are not
relevant when confirming a purchase order.
The order summary update; this argument is not used at all. The default is
AccountOrder::None.
A Boolean value defining whether a preview or the actual posting should be
done.
A Boolean value defining whether the document should be printed.
A Boolean value specifying whether printing management should be used. The
default value is false.
A Boolean value defining whether to keep the remaining quantity on order;
otherwise, it is set to zero. This argument is used when posting credit notes.
A container of a number of TmpFrmVirtual records. This argument is optional
and is used only when posting purchase invoices.



Processing Business Tasks

[ 260 ]

There's more...
The same technique can be used to post a purchase packing slip, invoice, or update to any
other status, which is available in a given context. Let's take a look at the following example:

    purchFormLetter = PurchFormLetter::construct(
    DocumentStatus::PurchaseOrder);

Replace the preceding code snippet with the following:

    purchFormLetter = PurchFormLetter::construct(
    DocumentStatus::Invoice);

Now, let's take another code snippet:

    purchFormLetter.update(
    purchTable,
    '',
    DateTimeUtil::date(DateTimeUtil::utcNow()),
    PurchUpdate::All,
    AccountOrder::None,
    NoYes::No,
    NoYes::Yes);

Replace the preceding code snippet with the following:

    purchFormLetter.update(
    purchTable,
    '8001',
    DateTimeUtil::date(DateTimeUtil::utcNow()),
    PurchUpdate::All,
    AccountOrder::None,
    NoYes::No,
    NoYes::Yes);

Now, when you run the job, the purchase order will be updated to an invoice. To check the
updated purchase order, navigate to Procurement and sourcing | Common | Purchase
orders | All purchase orders; notice that its Status field is different now.

If you are adding your objects in new projects, then you may need to set
this project property set as startup project as well, to run your preceding
code while you run the whole solution/project.



Processing Business Tasks

[ 261 ]

Creating a sales order
Sales orders are used throughout the sales process to hold information about the goods or
services that a company sells to its customers. Normally, sales orders are created from the
user interface, but for the automated processes, sales orders can also be created from the
code.

In this recipe, you will learn how to create a sales order from the code. We will use a
standard method provided by the application.

How to do it...
Carry out the following steps in order to complete this recipe:

Add a new Runnable class in your project and name it SalesOrderCreate.1.
Copy and paste the following code in the main method of this class:

        static void SalesOrderCreate(Args _args)
       {
          NumberSeq  numberSeq;
          SalesTable salesTable;
          SalesLine  salesLine;
          ttsBegin;
          numberSeq = NumberSeq::newGetNum(
          SalesParameters::numRefSalesId());
          numberSeq.used();
          salesTable.SalesId = numberSeq.num();
          salesTable.initValue();
          salesTable.CustAccount = 'US-017';
          salesTable.initFromCustTable();
          if (!salesTable.validateWrite())
         {
            throw Exception::Error;
         }
          salesTable.insert();
          salesLine.SalesId = salesTable.SalesId;
          salesLine.ItemId  = 'D0001';
          salesLine.createLine(true, true, true, true, true, true);
          ttsCommit;
          info(strFmt(
           "Sales order '%1' has been created", salesTable.SalesId));
       }

Save and build your code and select this class as set as startup object. Now, run2.
the project to create a new sales order.



Processing Business Tasks

[ 262 ]

Navigate to Sales and marketing | Common | Sales orders | All sales orders in3.
order to view the newly created sales order, as shown in the following
screenshot:

How it works...
In this recipe, we create a new job named SalesOrderCreate, which holds all the code.
The job starts by generating the next sales order number with the help of the NumberSeq
class. We also call the initValue() and initFromCustTable() methods to initialize
various salesTable buffer fields. Notice that, for initFromCustTable(), we first set the
customer account and call the method afterwards, instead of passing the customer record as
an argument. We insert the sales order record into the table only if the validation in the
validateWrite() method is successful.

Next, we create sales order lines. Here, we assign the previously used sales order number
and set the item number.

Finally, we call the createLine() method of the SalesLine table to create a new line.
This is a very useful method, which allows you to quickly create sales order lines. The
method accepts a number of optional Boolean arguments. The following list explains most
of them:

Perform the data validations before saving; the default is false
Initialize the line record from the SalesTable table; the default is false
Initialize the line record from the InventTable table; the default is false
Calculate the inventory quantity; the default is false



Processing Business Tasks

[ 263 ]

Add the miscellaneous charges; the default is true
Use the trade agreements to calculate the item price; the default is false
Reserve the item; the default is false
Ignore the customer credit limit; the default is false

There's more...
You can also use the data entities to insert Sales Order Header and Line records. To insert
into Sales order header, use the SalesOrderHeaderEntity entity, and for Sales Order
Line data, use the SalesOrderLineEntity data entity.

In the preceding code sample, we used a few methods to set some mandatory values in
SalesTable and SalesLine. You won't find similar methods in these entities so you may
have to assign all mandatory values manually.

While running any code from VS directly, it uses application UI to perform this task. In this
situation, many times you don't have the option to choose company and the default
company will be DAT. So you have to set the company on your project before you run your
code. To set the default company for a specific project, set the project property as shown in
the following screenshot:



Processing Business Tasks

[ 264 ]

Posting a sales order
In Dynamics 365 for Finance and Operations, a sales order goes through a number of
statuses in order to reflect its current position within the sales process. The status can be
updated either manually using the user interface or programmatically from the code.

In this recipe, we will demonstrate how a sales order status can be updated from the code.
We will register a packing slip for the sales order created in the previous recipe and print
the relevant document on the screen.

How to do it...
Carry out the following steps in order to complete this recipe:

Add a new runnable class, named SalesOrderPostPackingSlip with the1.
following code snippet in the main method (replace 000776 with your Sales
Order number, that was generated after the previous code):

        static void SalesOrderPostPackingSlip(Args _args)
       {
          SalesFormLetter salesFormLetter;
          salesTable      salesTable;
          salesTable = SalesTable::find('000776');
          salesFormLetter = SalesFormLetter::construct(
           DocumentStatus::PackingSlip);
          salesFormLetter.update(
           salesTable,
          DateTimeUtil::date(DateTimeUtil::utcNow()),
          SalesUpdate::All,
          AccountOrder::None,
          NoYes::No,
          NoYes::Yes);
       }

Save and build your code and select this class as set as startup object. Now, run2.
the project to post the specified sales order. As a result you will see the status of
sales order 000776 will be changed to delivered.



Processing Business Tasks

[ 265 ]

How it works...
In this recipe, we create a new job named SalesOrderPostPackingSlip, which holds all
the code.

First, we find a sales order, which we are going to update. In this recipe, we use the sales
order created in the previous recipe. Here, we will normally replace this code with a user
input or an output from some other function.

Next, we create a new SalesFormLetter object using its construct() constructor. The
constructor accepts an argument of the DocumentStatus type, which defines the type of
posting to be done. Here, we use DocumentStatus::PackingSlip as a value, as we want
to register a packing slip.

Finally, we call the update() method of SalesFormLetter, which does the actual posting.
It accepts a number of arguments, as follows:

The sales order header record, that is, the SalesTable table.
The transaction date; the default is the system date.
The quantity to be posted; the default is SalesUpdate::All.
The order summary update; this argument is not used at all. The default is
AccountOrder::None.
A Boolean value defining whether a preview or the actual posting should be
done.
A Boolean value defining whether the document should be printed.
A Boolean value specifying whether printing management should be used; the
default is false.
A Boolean value defining whether to keep the remaining quantity on order;
otherwise, it is set to zero. This argument is used when posting credit notes.
A container of a number of TmpFrmVirtual records; this argument is optional
and is used only when posting sales invoices.

There's more...
The SalesFormLetter class can also be used to do other types of posting, such as sales
order confirmation, picking lists, or invoices. For example, to invoice the previously used
sales order:

    salesFormLetter = SalesFormLetter::construct(
     DocumentStatus::PackingSlip);



Processing Business Tasks

[ 266 ]

Replace the preceding line of code with the following line of code:

    salesFormLetter = SalesFormLetter::construct(
     DocumentStatus::Invoice);

Now, when you run the job, the sales order will be updated to an invoice.

Creating an electronic payment format
Electronic payments, in general, can save time and reduce paperwork when making or
receiving payments within a company. Dynamics 365 for Finance and Operations provides
a number of standard out-of-the-box electronic payment formats. The system also provides
an easy way of customizing the existing payment forms or creating new ones.

In this recipe, you will learn how to create a new custom electronic payment format. To
demonstrate the principle, we will only output some basic information, and we will
concentrate on the approach itself.

How to do it...
Carry out the following steps in order to complete this recipe:

In the AOT, create a new class named VendOutPaymRecord_Test with the1.
following code snippet:

        public class VendOutPaymRecord_Test extends VendOutPaymRecord
       {
       }
        public void output()
       {
          str         outRecord;
          Name        companyName;
          BankAccount bankAccount;
          outRecord = strRep(' ', 50);
          companyName = subStr(
          custVendPaym.recieversCompanyName(), 1, 40);
          bankAccount = subStr(
          custVendPaym.recieversBankAccount(), 1, 8);
          outRecord = strPoke(outRecord, companyName, 1);
          outRecord = strPoke(outRecord, bankAccount, 43);
          file.write(outRecord);
       }



Processing Business Tasks

[ 267 ]

Create another class named VendOutPaym_Test with the following code snippet:2.

public class VendOutPaym_Test extends VendOutPaym
{
}
public PaymInterfaceName interfaceName()
{
   return "Test payment format";
}
public ClassId custVendOutPaymRecordRootClassId()
{
   return classNum(VendOutPaymRecord_Test);
}
protected Object dialog()
{
   DialogRunbase dialog;
   dialog = super();
   this.dialogAddFileName(dialog);
   return dialog;
}
public boolean validate(Object _calledFrom = null)
{
   return true;
}
public void open()
{
   #LocalCodePage
   file = CustVendOutPaym::newFile(filename, #cp_1252);
   if (!file || file.status() != IO_Status::Ok)
    {
       throw error(
        strFmt("File %1 could not be opened.", filename));
    }
    file.outFieldDelimiter('');
    file.outRecordDelimiter('\r\n');
    file.write('Starting file:');
}
public void close()
{
   file.write('Closing file');
}



Processing Business Tasks

[ 268 ]

Navigate to Accounts payable | Setup | Payment | Methods of payment and3.
create a new record, as follows:

Open the File formats tab page, click on the Setup button, and move your newly4.
created Test payment format from the pane on the right-hand side to the pane on
the left-hand side.
Then, go back to the Methods of payment form and select Text payment format5.
in the Export format field as follows:



Processing Business Tasks

[ 269 ]

Close the Methods of payment form. Navigate to Accounts payable | Journals |6.
Payments | Payment journal and create a new journal. Click on the Lines button
to open the journal lines. Create a new line and make sure you set Method of
payment to Test, as follows:

Next, click Generate payments. Fill in the dialog fields as displayed in the7.
following screenshot, click on OK, and select the exported file's name:



Processing Business Tasks

[ 270 ]

Click on OK to complete the process; notice that the journal line's Payment status8.
changed from None to Sent, which means that the payment file was generated
successfully.
Open the created file with any text editor (for example, Notepad), to check its9.
contents, shown as follows:



Processing Business Tasks

[ 271 ]

How it works...
In this recipe, we create two new classes, which are normally required for generating
custom vendor payments. Electronic payments are presented as text files to be sent to the
bank. The first class is the VendOutPaymRecord_Test class, which is responsible for
formatting the payment lines, and the second one is the VendOutPaym_Test class, which
generates the header and footer sections and creates the payment file itself.

The VendOutPaymRecord_Test class extends VendOutPaymRecord and inherits all the
common functionality. We only need to override its output() method to define our own
logic in order to format the payment lines. The output() method is called once for each
payment line.

Inside the output() method, we use the outRecord variable, which we initially fill in with
50 blank characters using the global strRep() function, and then insert all the necessary
information into the predefined positions within the variable, as per format requirements.
Normally, here we should insert all the required information, such as dates, account
numbers, amounts, references, and so on. However, to keep this demonstration to a
minimum, we only insert the company name and the bank account number.

In the same method, we use another variable named custVendPaym of the CustVendPaym
type, which already holds all the information we need. We only have to call some of its
methods to retrieve it. In this example, to get the company name and the bank account
number, we call recieversCompanyName() and recieversBankAccount(), respectively.
We trim the returned values using the global substr() function, and insert them into the
first and 43rd positions of the outRecord variable using the global strPoke() function.

Finally, at the bottom of the output() method, we add the formatted text to the end of the
payment file.

Another class that we create is VendOutPaym_Test. It extends the VendOutPaym class and
also inherits all the common functionality. We only need to override some of the methods
that are specific to our format.

The interfaceName() method, returns a name of the payment format. Normally, this text
is displayed in the user interface, when configuring payments.

The custVendOutPaymRecordRootClassId() method returns an ID of the class, which
generates payment lines. It is used internally to identify which class to use when formatting
the lines. In our case, it is VendOutPaymRecord_Test.



Processing Business Tasks

[ 272 ]

The dialog() method is used only if we need to add something to the user screen when
generating payments. Our payment is a text file, so we need to ask a user to specify the
filename. We do this by calling the dialogAddFileName() method, which is a member
method of the parent class. It will automatically add a file selection control and we won't
have to worry about things, such as a label or how to get its value from the user input.
There are numerous other standard controls, which can be added to the dialog by calling
various dialogAdd...() methods. Additional controls can also be added here using
addField() or similar methods of the dialog object directly.

The validate() method is one of the methods that has to be implemented in each custom
class. Normally, user input validation should go here. Our example does not have any
validation, so we simply return true.

In the open() method, we are responsible for initializing the file variable for further
processing. Here, we use the newFile() constructor of the CustVendOutPaym class to
create a new instance of the variable. After some standard validations, we set the field and
the row delimiters by calling the outFieldDelimiter() and outRecordDelimiter()
methods of the CustVendOutPaym class, respectively. In this example, the values in each
line should not be separated by any symbol, so we call the outFieldDelimiter() method
with an empty string. We call the outRecordDelimiter() method with the new line
symbol to define that every line ends with a line break. Note that the last line of this method
writes a text to the file header. Here, we place some simple text so that we can recognize it
later when viewing the generated file.

The last one is the close() method, which is used to perform additional actions before the
file is closed. Here, we specify some text to be displayed in the footer of the generated file.

Now, this new payment format is ready for use. After some setup, we can start creating the
vendor payment journals with this type of payment. Note, the file generated in the previous
section of this recipe, we can clearly see which text in the file comes from which part of the
code. These parts should be replaced with your own code to build custom electronic
payment formats for Dynamics 365 for Finance and Operations.



6
Data Management

In this chapter, we will cover the following recipes:

Data entities
Building a data entity with multiple data sources
Data packages
Data migration
Import of data
Troubleshooting

Introduction
The data management feature in Dynamics 365 for Finance and Operations enables you to
manage and audit your data efficiently in systems. The excellent feature provides many
tools such as Import, Export, delete bulk data and detect duplicate data, and so on. You can
also develop custom data entities as well.

Integration through the data management platform provides more capabilities and higher
throughput for inserting/extracting data through entities. Typically, data goes through three
phases in this integration scenario:

Source - These are inbound data files or messages in the queue. Typical data
formats include CSV, XML, and tab-delimited.
Staging - These are automatically generated tables that map very closely to the
data entity. When data management enabled is true, staging tables are generated
to provide intermediary storage. This enables the framework to do high-volume
file parsing, transformation, and some validations.
Target - This is the data entity where data will be imported.



Data Management

[ 274 ]

Now let's see how to build an entity and how to use any existing/new data entity in
Dynamics 365 for Finance and Operations. We can create new entities in two ways:

Using a Wizard
Directly from a table

We will explain both with different recipes in this chapter.

Data entities
In the earlier version of Dynamics 365 for Finance and Operations, there are multiple
options such as DIXF, Excel Add-ins, and AIF for data management. Data entities are
introduced as a part of data management to be used as a layer of abstraction to easily
understand by using business concepts.

The concept of data entities combines those different concepts into one. You can reuse Data
entities for an Excel Add-ins, Integration, or import/export. The following table shows core
scenarios of Data management:

Data Migration Migrate reference, master, and document data from legacy or
external systems.

Setup and copy
configuration

Copy configuration between company/environments.
Configure processes or modules using the Lifecycle Services
(LCS) environment.

Integration Real-time service based integration.
Asynchronous integration.

More information about this can be found at https:/ /docs. microsoft.
com/en- us/ dynamics365/ unified- operations/ dev-itpro/ data-
entities/ data- entities- data- packages.

Getting ready
The following are the terms introduced for data management that will be used throughout
the chapter:

https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages


Data Management

[ 275 ]

Data project A project that contains configured data entities, which include mapping
and default processing options.

Data job A job that contains an execution instance of the data project, uploaded files,
schedule (recurrence), and processing options.

Job history Histories of source to staging and staging to target.

Data package A single compressed file that contains a data project manifest and/or data
files. This is generated from a data job and used for import or export of
multiple files with the manifest.

Data management uses data entities under the hood for an abstract layer for business logic
implementation. Data is inserted in staging tables using SSIS, which is then validated and
transformed to map to the target entity.

How to do it...
Carry out the following steps in order to complete this recipe:

Create a new Dynamics 365 for Operations project in Visual Studio.1.



Data Management

[ 276 ]

We will create a demo table with a few fields as follows, to use in this Data2.
Entity:

Add a new Data Entity in the project by right-clicking the menu as follows:3.



Data Management

[ 277 ]

Next you will get a wizard screen, select PacktVendTable as the Primary4.
datasource. Entity category as Master and click on Next:



Data Management

[ 278 ]

In the next step, you have to choose all required fields from the primary5.
dataSource table, for this recipe we will keep only a few fields and mark them
as Is Mandatory as well. Once done, click on Finish:

Save your project and build it. The project must look as follows:6.



Data Management

[ 279 ]

Now we need to add this entity in the data management work space. Navigate to7.
Work space | Data management|Data entities.

Add a new record as follows and save it. Now click on Validate:



Data Management

[ 280 ]

Let's try to import data into PacktVendTable using this new Data entity. Now go8.
back to the Data management work space. Click on Import tile. Fill in the details
as follows:

Upload the Excel file that contains data. Now click on the Import button. You will get a
notification once this import is done. To check, browse the table and check inserted data.

How it works...
We start this recipe with creating a new table with a few fields similar to vendTable. This
table is used to create a new data entity through the VS wizard. We added new a data entity
object in our project, once we select a Data entity object it will initiate a wizard.



Data Management

[ 281 ]

In this step, we select our primary table that we created earlier. In the entity category field
you have to choose this on the basis of table type. There are five different types of entity
category. If you are using any existing table, this will select automatically, while for new
tables you may have to change it accordingly.

In the next step, we select fields that are really required in this entity. You can change a few
properties of fields such as label and mandatory. At the end of this wizard you will have a
new data entity along with a staging table created. You will find a few more supporting
Dynamics 365 for Finance and Operations objects in your project.

There's more...
It is important to understand the different categories of entities while you are working on
data entities. In Dynamics 365 for Finance and Operations, entities are categorized based on
their functions and the type of data that they serve. The following are five categories for
data entities:

Parameter:
Tables that contain only one record, where the columns are values
for settings. Examples of such tables exist for Account payable
(AP), General ledger (GL), client performance options, workflows,
and so on.
Functional or behavioral parameters.
Required to set up a deployment or a module for a specific build or
customer.
Can include data that is specific to an industry or business. The
data can also apply to a broader set of customers.

Reference:
Simple reference data, of small quantity, that is required to operate
a business process.
Data that is specific to an industry or a business process.
Examples include units, dimensions, and tax codes.

Master:
Data assets of the business. Generally, these are the "nouns" of the
business, which typically fall into categories such as people, places,
and concepts.
Complex reference data, of large quantity. Examples include
customers, vendors, and projects.



Data Management

[ 282 ]

Document:
Worksheet data that is converted into transactions later.
Documents that have complex structures, such as several line items
for each header record. Examples include sales orders, purchase
orders, open balances,and journals.
The operational data of the business.

Transaction:
The operational transaction data of the business.
Posted transactions. These are non-idempotent items such as
posted invoices and balances. Typically, these items are excluded
during a full dataset copy.
Examples include pending invoices.

Let's see one more example where we will discuss how to create the same entity
from the PacktVendTable wizard. To carry on, follow these steps:

Right-click on the table and select Addins |Create data entity. As shown in the1.
following screenshot:



Data Management

[ 283 ]

It will directly create all required objects in your current project:2.

Now save all your changes and build the solution. On successful build, your3.
Data entity will be ready for use.

Building a data entity with multiple data
sources
We could also create a data entity where we include multiple data sources. Here our data
entity takes care of all integrity constraints and validation and creates records in related
tables if it does not exist. Let us take, an example of inventory breakdown, where we create
an inventory site, warehouse, location, zones, aisle, and so on. We could create a data entity,
which encapsulates all these tables, and a flat file import could create related records in all
these tables.

How to do it...
Carry out the following steps in order to complete this recipe:

Add a new data entity in the project and name it PacktInventBreakDown.1.



Data Management

[ 284 ]

A Data Entity Wizard will be launched, as shown in the following screenshot:2.

Next you need to select all/required fields from WMSLocation.3.



Data Management

[ 285 ]

Click on the Add data source button and select Relation InventLocation.4.



Data Management

[ 286 ]

Select Invent location from the node at the right of WMSlocation, as shown in5.
the next screenshot.
Add new data source InventSite to InventLocation and select all fields:6.

Add more tables, WHSZone and WMSAisle, on WMSLocation:7.



Data Management

[ 287 ]

The system will create the data entity, staging table, and privileges to support8.
data management and OData on the data entity.
Select all child data sources and set the Is Read Only property as No, as shown9.
in the following table:

Your properties must look as follows:

Fetch mode OneToOne

Is Read Only No



Data Management

[ 288 ]

Now to verify the integrity of the data entity. Create a runnable class name,10.
InventBreakDownCreate, and add the following code:

        class InventBreakDownCreate
       {
         /// <summary>
         /// Runs the class with the specified arguments.
         /// </summary>
         /// <param name = "_args">The specified arguments.</param>
         public static void main(Args _args)
        {
          PacktInventBreakDown inventBreakDown;

          inventBreakDown.initValue();
          inventBreakDown.InventSite_SiteId   = 'PacktSite';
          inventBreakDown.InventSite_Name = "Packt site":
          inventBreakDown.InventLocation_InventLocationId = "Packt11";
          inventBreakDown.InventLocation_Name = "Packt 11";



Data Management

[ 289 ]

          inventBreakDown.wMSLocationId = "PacktWMS11";
          inventBreakDown.aisleId = "PacktWMSAisle";
          inventBreakDown.WMSAisle_inventLocationId = "Packt11";
          inventBreakDown.WMSAisle_aisleId ="PacktWMSAisle";
          inventBreakDown.WMSAisle_inventLocationId = "Packt11";
          inventBreakDown.inventLocationId = "Packt11";
          inventBreakDown.WHSZone_ZoneId = "PacktZone";
          inventBreakDown.WHSZone_ZoneName = "Packt Zone";
          inventBreakDown.WHSZone_ZoneGroupId = "BULK";
          inventBreakDown.ZoneId = "PacktZone";
          inventBreakDown.inputLocation = "PacktWMS11";
          inventBreakDown.locationType = WMSLocationType::Pick;
          inventBreakDown.insert();
        }
       }

On running this class it would create a site, warehouse, location, zone, and aisle11.
in a single run. These types of data entities could be very useful when migrating
flat data from a client.

How it works...
In this recipe, we used the WMSLocation table as our parent datasource. This table is used
to create a new data entity through the VS wizard. We added a new data entity object in our
project, once we select a data entity object it will initiate a wizard.

In this step, we select our primary table, that is, WMSLocation. In the entity category field,
you have to choose this based on table type. There are five different types of entity category.
If you are using any existing table, this will select automatically, while for new tables you
may have to change it accordingly.

In the next step, we have selected InventLocation, InventSite, WHSZone, and WMSAisle,
which are related tables. After you have found a few more supporting Dynamics 365 for
Finance and Operations objects in your project. After the last step, you need to open data
entity and modify the Is Read Only property on all child data sources to No as it would
allow us to create related records in the child table. Finally, to test this entity you create a
job and after running, verify the data in related tables.



Data Management

[ 290 ]

You can add more data sources in the wizard and use fields from related
child tables as well. To use other tables make sure relevant relations exist
on table level.

There's more...
The custom entity that we created in the preceding recipe could be used in data
management. Here we would use the entity to export the inventory setup data.

Select the Export option and choose our custom entity in the Data entity drop-down, as
shown in the following screenshot:



Data Management

[ 291 ]

Select the Export option, it schedules an export batch job that reads the data entity and
writes the data to file as per the setup specified for the export job. Data gets exported
successfully and we can view staging data to validate that the correct data has been
imported.



Data Management

[ 292 ]

Data packages
Data packages in Dynamics consist of logically grouped data entities. In a simpler way, a
data package contains one or more entities or groups of data entities. Lifecycle Services
(LCS) contains multiple base data packages that you can use to reduce implementation time
during the project. These packages also be used to prepare your system in much less time
with demo/real data. These packages can contain the elements that are required in each
module/area in order to meet the minimum requirements. As per business requirements or
advanced business processes, you might have to add more entities to the list of packages.

Getting ready...
The data packages that Microsoft publishes on LCS use a numbering sequence that is based
on the module, data type, and sequence. Here is an example:

Module/area numbering:

https://msdynamics.blob.core.windows.net/media/2016/09/PDP_06.png


Data Management

[ 293 ]

Data type numbering:

Numbering format:

The names of data packages include the numbering format, which is followed by the
module abbreviation and then a description. For example, the following screenshot shows
the general ledger data packages:

Now, in this recipe we will see how to create a new package in Dynamics 365 for Finance
and Operations. However, it does not require any coding at all, but still you have to choose
every entity wisely for your data package, to perform all export/import functions properly.

Data packages can be used for both importing and exporting data into your application. In
coming recipes we will see both examples. Initially we will export a package followed by
importing data back to the system using the same package.

https://msdynamics.blob.core.windows.net/media/2016/09/PDP_07.png
https://msdynamics.blob.core.windows.net/media/2016/09/PDP_08.png
https://msdynamics.blob.core.windows.net/media/2016/09/PDP_09.png


Data Management

[ 294 ]

How to do it...
Let's create a simple package first that will contain two entities. Carry out the following
steps in order to complete this recipe:

Navigate to Workspace | Data management | Export.1.
Fill out details as shown in the following screen, with your first entity Customer.2.
Click on Add Entity:



Data Management

[ 295 ]

Add another entity in your package, Customer groups. Click on Add entity:3.



Data Management

[ 296 ]

Your screen must look as follows:4.

Click on Entity Sequence and change the Customer groups sequence to 1, and5.
click on Update selected. Now update the sequence for Customers to 2 and click
on Update Selected. Now click on the OK button:



Data Management

[ 297 ]

Now you are on the Data Management home screen. Click on the Export button.6.
You will be redirected to the Job Execution form. Once execution has succeeded,
click on Download package:

While asking for Data, the package does not exist. Click Yes to create a new7.
package. You will get a ZIP file with both entities along with two more files,
Manifest and PackageHeader. Both files have metadata for your package.
Now let us try to import this package with a few new records and some updates8.
in existing records.

In customer entity, modify entities as follows:



Data Management

[ 298 ]

In customer group, modify entities as follows:

Save your data and make a ZIP file along with Manifest and packageHeader.

Now let's try to import this data package in the system. We have two options to9.
import packages in a system. First using LCS tools and using data management
workspace. In our recipe we will use data management workspace. Navigate to
Data management workspace and select Import. Fill details in as follows:



Data Management

[ 299 ]

Now click on the Import button. A job will execute and insert/update data in its10.
respective table. You can see the record counts once it completes:

There's more...
With the LCS tool, you can create default packages as well using Process Data Package. LCS
will create Data packages for you for all available modules with proper sequencing and
mapping.



Data Management

[ 300 ]

Let's see how to create default Data packages in LCS:

Log into your LCS account. Select your project in case you have multiple projects1.
aligned with your LCS account.
Go to Asset Library, select Process data package:2.

Click on the Import button and select a Process Data Package template and click3.
on pick.

It will create a new Process data package file with the status, Processing. It will
take a few minutes to create all packages under the Data package tab.



Data Management

[ 301 ]

Once done, refresh your page and select Data package under Asset Library, you4.
will find that all default packages are added here:

The same will be added in the Configuration & data manager tool. To check, go5.
back to the Project home screen in LCS and select the Configuration and Data
Manager tool. Your screen must look as follows:



Data Management

[ 302 ]

From here you can download the packages and upload them with real data. Once6.
you have all required data in entities, the same package can be uploaded in
Dynamics 365 for Finance and Operations through the Configuration & data
manager tool.

See also
You can find all available Data packages with their sequence number at the given
link: https:/ / docs. microsoft. com/ en-us/ dynamics365/ unified- operations/
dev-itpro/ data- entities/ data- entities- data- packages.

Data migration
Data migration is a key task of a project implementation cycle. Here are the key points
regarding export/import tasks.

The following pain points can occur during migration:

Inability to do quick iterative migration and validations
Multiple hops that lead to multiple dependencies and change of errors
Complexity due to repeated manual interventions
Difficulty in tracing and error troubleshooting
Difficulty migrating a large volume of data within a time constraint

During migration, you can strategize and choose data entities. Data entities also save time
during implementation because previous activities required data export from a database,
data export validation, and data transformation to files such as Excel or XML. In the current
version of Dynamics 365 for Finance and Operations, these hops have been eliminated. If an
import error occurs, you can skip selected records and choose to proceed with the import
using the good data, opting to then fix and import the bad data later. You will be allowed to
partially continue and bad data will be indicated by using errors. Data imports can be easily
scheduled using a batch, which offers flexibility when it is required to run. For example,
you can migrate customer groups, customers, vendors, and other data entities in the system
at any time.

https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages
https://docs.microsoft.com/en-us/dynamics365/unified-operations/dev-itpro/data-entities/data-entities-data-packages


Data Management

[ 303 ]

Getting ready
Export is the process of extracting data from the system utilizing data entities. The export
process is done through a project. When creating the process, there is a lot of flexibility as to
how the export project is defined. There is an option to choose not only which data entities
to export, but also the number of entities, the file format used (there are 14 different formats
to choose for export), and apply a filter to each entity to limit what is exported. After the
data entities have been pulled into the project, the sequencing and mapping described
earlier can be performed for each export project.

After the project is created and saved you can export the project to create a job. During the
export process, you can see a graphical view of the status of the job and the record count.
This view shows multiple records so you can review the status of each record prior to
downloading the actual files.



Data Management

[ 304 ]

After a few seconds, click refresh and you will notice a change in status of the job:



Data Management

[ 305 ]

After the job is completed, you can choose how to download the files of each data entity
either as a separate file or by combining the files as a package. If there are multiple data
entities in the job, choosing the package option will expedite the upload process. The
package is a zipped file, containing a data file for each entity as well as a package header
and manifest. These additional documents are used when importing in order to add the
data files to the correct data entities and sequence the import process.

How to do it...
Dynamics 365 for Finance and Operations provides out-of-the-box entities for data export
and import; we will take an example to export stock on hand by inventory site:

Click on Export in data management:1.



Data Management

[ 306 ]

Click on the Export button to export the data and to schedule a batch job select2.
Create recurring data job. After clicking Export it will show the following screen:



Data Management

[ 307 ]

On the refreshing form, we see status as 7426 records exported. Here we need to3.
click Download package to download the data here and the system will create a
data package for us:



Data Management

[ 308 ]

You can check the staging logs for details by navigating to the View staging data button, as
shown in the preceding screenshot.

How it works...
In normalized tables, a lot of the data for each item might be stored in an Invent Sum table,
and then the rest might be spread across a small set of related tables. Dynamics 365 uses the 
data entity for the inventory on hand concept which appears as one de-normalized view, in
which each row contains all the data from the invent sum table and its related tables to
show inventory stock by site. An export job gives feasibility to either export the data from
target entity to staging table and then write the same data to the file or skip staging and
write the data directly to file. Here, when we choose staging then the system writes the data
to file using SQL server integration services.

Importing data
Import is the process of pulling data into a system utilizing data entities. The import 
process is done through the Import tile in the Data Management workspace. Data can be
imported either for individual entities or for a group of logically related entities that are
sequenced in the correct order. The file formats vary depending on the type of import. For
an entity, it can be an Excel file that is comma-separated, tab-separated, text. For a data
package, it is a ZIP file. In both cases, the files are exported using the previously-mentioned
export process. The detailed steps for importing data using data packages are as follows.

How to do it...
Let us import and create released products in Dynamics 365 for Finance and Operations:

In the system administration module, click Data management workspace, to1.
begin importing, select import tile.
In the Name field, provide a logical name for the package, which is being2.
imported. In the Source Data Format field, select CSV as the source data format.



Data Management

[ 309 ]

Click the Upload button and choose the file from the location for the data that is3.
being imported.



Data Management

[ 310 ]

After clicking Import, the system will import the file in a blob, as shown in the4.
screenshot:



Data Management

[ 311 ]

Click Refresh to update the job status:5.



Data Management

[ 312 ]

Check the status of the job to see if the records are imported:6.



Data Management

[ 313 ]

View staging data and check the product in released form:7.

Finally, we could check that the product imported by us is released in designated company.
Using data management platform in Dynamics 365 for Operation we could import
thousands of products and release them in multiple companies.



Data Management

[ 314 ]

How it works...
Dynamics 365 creates a staging table for each entity in the database where the target table
resides. Data that is being migrated is first moved to the staging table. There, you can verify
the data, and perform any cleanup or conversion that is required. You can then move the
data to the target table or export it. Here in, we provide a source file for import of released
products, then the system imports the flat data file in a staging table using the SSIS package
and then uses X++ jobs to move data from the staging table to the target table to create
records in EcoResProduct, InventTable, and related tables. It uses data entity for
insertion of flat data from staging in target tables so that related records are created and
their integrity is maintained.

Troubleshooting
Now you must have understood the concept and logic behind data management. We also
created a few entities, packages, and other related objects. Import and Export become very
easy with Dynamics 365; however, these processes are not always straightforward. You
may get a few unwanted errors during this.

In this section, we will see how to troubleshoot these errors and warnings.

Getting ready
While working with data management at times we encounter errors in import and exports.
The framework provided with the product is robust enough to identify the error logs and
suggest for possible solutions to rectify the data. This section describes how to troubleshoot
during the different stages of data package processing.



Data Management

[ 315 ]

How to do it...
Carry on the following steps to troubleshoot some issues that you may get during routine
development:

Normally during export processes, we do not get any errors, but if you get an1.
error during the export process click View execution log and review the log text,
staging log details, and Infolog for more information:



Data Management

[ 316 ]

If you get an error during the export process with a note directing you to not skip2.
staging, turn off the Skip staging, and then add the entity. If you are exporting
multiple data entities, you can use the Skip staging button for each data entity:

For carrying out import processes upload the data entity files.3.
If data entities do not display in Selected Files and Entities after you click4.
Upload during the import process, wait a few minutes, and then check if the
OLEDB driver is still installed. If not, then reinstall the OLEDB driver. The driver is
Microsoft Access Database Engine 2010 Redistributable -

AccessDatabaseEngine_x64.exe.



Data Management

[ 317 ]

If data entities display in Selected Files and Entities with a warning after you5.
click Upload during the import process, verify and fix the mapping of individual
data entities by clicking View map. Update the mapping and click save for each
data entity.
Import the data entities:6.



Data Management

[ 318 ]

If data entities fail, (shown with a red X or yellow triangle icon on the data entity7.
tile) after you click Import, click View staging data on each tile under the
Execution summary page to review the errors. Sort and scroll through the
records with Transfer status is equal to Error to display the errors in the Message
section. Download the staging table via Microsoft Office. Fix a record (or all
records) directly in staging by clicking Edit, Validate all, and Copy data to
target, or fix the import file (not staging file) and re-import the data:



Data Management

[ 319 ]

We could choose correct values in staging from the dropdown and then validate8.
the lines:



Data Management

[ 320 ]

After successful validation we could copy the data to target and run the job9.
synchronously or asynchronously.



Data Management

[ 321 ]

After the job is completed, we could check status of staging records as follows:10.

If data entities fail, you can check the import file to see whether there is an extra11.
line in the file with text that displays "This is a string that is inserted into Excel as
a dummy cell to make the column to support more than 255 characters. By
default, an Excel destination component will not support more than 255
characters. The default type of Excel will be set based on the first few rows". This
line is added during data export. If this line exists, delete this line, re-package the
data entity, and try to import.



Data Management

[ 322 ]

How it works...
Usually the system provides enough support to check the logs of error and resolve them.
Let's see how we could check the log and interpret it to resolve the issue:

Status and error details of a scheduled job can be found under the Job history1.
section in the Data management form:



Data Management

[ 323 ]

Status and error details of previous runs for data entities can be displayed by2.
selecting a data project and clicking Job history. In the Execution history form,
select a job, and click View staging data and View execution log. The previous
runs include data project runs that were executed as batch jobs or manually:

Many entities support automatic generation of identifiers based on number3.
sequence setup. For example, when creating a product, the product number is
automatically generated and the form does not allow you to edit values
manually:



Data Management

[ 324 ]

Here auto-generated fields will allow the framework to use the number sequence4.
that auto generates the Product number and we need not include the product
number in our import file:



Data Management

[ 325 ]

It is possible to enable manual assignment of number sequences:5.



Data Management

[ 326 ]

In this case, you can manually provide the value and enable manual assignment6.
of product numbers instead:

If you are using the import file to create released products then you need to7.
supply a product number column.

There's more...
While importing the system users entity, you may receive a integrity violation error if there
is a guest user in the exported package. The guest user must be deleted from the package in
order for the entity to work.

If a record already exists in the UserInfo table (the admin record would most likely always
exist), the import will fail for those records, but work for other records.



7
Integration with Microsoft Office

In this chapter, we will cover the following recipes:

Configuring and using the Excel Data Connector add-in
Using Workbook Designer
Export API
Lookup in Excel - creating a custom lookup
Document management
Creating a Word document with repeated elements

Introduction
In our day-to-day operations we use Microsoft Office a lot to store and retrieve numerical
data in a grid format of columns and rows to calculating and analyze company data such as
sales figures, sales taxes, or commissions. Dynamics 365 for Finance and Operations
provides us with integration with Microsoft Office, which includes Microsoft Excel,
Microsoft Word, the Document Management subsystem, and email. In this chapter, we will
see how Microsoft Dynamics 365 for Finance and Operations integrates with Excel and
Word by using data entities as an entry point into the system, how Excel can become a core
part of the user experience, and how Excel and Word can be used for ad hoc lightweight
reporting. We will also see how files can be stored and shared by using the Document
Management and email capabilities in Dynamics 365 for Finance and Operations.



Integration with Microsoft Office

[ 328 ]

Configuring and using the Excel Data
Connector add-in
Microsoft Excel can change and quickly analyze data. The Excel Data Connector app
interacts with Excel workbooks and OData services that are created for publicly exposed
data entities. The Excel Data Connector add-in enables Excel to become a seamless part of
the user experience. The Excel Data Connector add-in is built by using the Office Web Add-
ins framework. The add-in runs in a task pane. Office Web Add-ins are web applications
that run inside an embedded Internet Explorer browser window.

In this recipe, we will show you how to configure an Excel Data Connector add-in and use
it to export data from Dynamics 365 for Finance and Operations and publish the updated
data back in Dynamics 365 for Finance and Operations.

How to do it...
Carry out the following steps in order to complete this recipe:

Open a new workbook in Excel and navigate to the Insert tab. Under Add-ins,1.
select My Add-ins, as shown in the following screenshot:



Integration with Microsoft Office

[ 329 ]

Under Office Add-ins, navigate to STORE, search for Microsoft Dynamics2.
Office Add-in, and click on Add. This is shown in the following screenshot:

Once you've clicked, a new window will open within Excel as follows. Click on3.
Add server information and the system will ask for account credentials. You
have to sign in as the user that has access in your Dynamics 365 for Finance and
Operations:



Integration with Microsoft Office

[ 330 ]

This will open up a Data Connector add-in app window as follows:4.

Let's navigate to Accounts receivable | Customers | All Customers, press the5.
Open in MS office button, select OPEN IN EXCEL, and choose to Download:



Integration with Microsoft Office

[ 331 ]

Let the file reload and retrieve the data. It will open the file as follows. Select a6.
customer record to update the Customer group field to change its value from 10
to 30:

Once the Customer group value has been changed, then select the Publish button7.
to update the record in Dynamics 365 for Finance and Operations. Consider the
following screenshot:



Integration with Microsoft Office

[ 332 ]

Filter the customer in the ALL CUSTOMERS form and check the result, as8.
shown in the following screenshot:

How it works...
We start the recipe by first installing the Microsoft Dynamics Office add-ins for Dynamics
365 for Finance and Operations. Data from Dynamics is exposed to the external world by
using OData entities, and authentication is done via Azure Active Directory, providing that
the user signed in has access to Office 365. OData sits on the same authentication stack as
the server. The add-in uses OAuth to facilitate authentication.

We can use the Microsoft Dynamics Excel Data Connector App (Excel App) to create, read,
update, and delete Dynamics 365 for Finance and Operations. The connector uses OData
services that are created for any entity that is left in the default state of Public
(DataEntity.Public=Yes).

The following text will suggest how the data is accessed by Excel by using various
technologies:

Excel | Office Web Add-in (JS + HTML) | JavaScript OData API (Olingo) | Authentication
through Azure Active Directory (AAD) | Dynamics 365 for Finance and Operations OData
services on the AOS | Dynamics 365 for Finance and Operations Entities | Dynamics 365 for
Finance and Operations LINQ provider | Dynamics 365 for Finance and Operations
Database.



Integration with Microsoft Office

[ 333 ]

Using Workbook Designer
We can use the Workbook Designer page to design an editable custom export workbook 
that contains an entity and a set of fields. Before we can publish data edits, all the key fields
of the entity must be in the Excel table. Key fields have a key symbol next to them. To
successfully create or update a record, it must have all the mandatory fields in the Excel
table. Mandatory fields have an asterisk (*) next to them.

In this recipe, we will show you how to design an Excel workbook from Dynamics 365 for
Finance and Operations and use it to export data from Dynamics 365 for Finance and
Operations and publish the updated data back in Dynamics 365 for Finance and Operations.
We could also import the same workbook to use it as a document template.

How to do it...
Carry out the following steps in order to complete this recipe:

Navigate to Common | Common | Office Integration | Excel workbook1.
designer form in Dynamics 365 for Finance and Operations.
Find the data entity Vendor and select the fields from the available fields, as2.
follows:

Click the Create workbook button. The Create workbook button will add the3.
selected entity and fields, a pointer to the server, and the app into a workbook.



Integration with Microsoft Office

[ 334 ]

The Get entity record count button will show the record count for the currently4.
selected entity. Currently, the Excel Data Connector App cannot handle large (tall
and wide) data-sets. Any unfiltered entity with more than 10,000 records is at
risk of crashing the app.

After creating the workbook, enable editing in Excel and the data will be loaded5.
as follows:

After obtaining a workbook with an Excel Data Connector App, additional data6.
sources can be added using the Design button:



Integration with Microsoft Office

[ 335 ]

We could edit data here and add this workbook to Document Templates in7.
Dynamics 365 for Finance and Operations, so that it will be added as an option in
the Open in Excel section of the Open in Microsoft Office menu.

Navigate to Common | Common | Office Integration | Document Templates:8.

Note here, List in Open Office Menu will be checked for the record created for9.
our custom Vendors Workbook record:



Integration with Microsoft Office

[ 336 ]

Navigate to Accounts payable | Vendors | All Vendors:10.

How it works...
Dynamics 365 for Finance and Operations has an inbuilt framework to design workbooks,
where the user is presented with the Data entities dropdown. When we select data entity
fields for export, to retrieve the resulting workbook, click Create Workbook in the app bar.
We can save this workbook and it can be imported as a Word document template. Once this
is imported into the system and has a List in Open Office menu, then it is automatically
added as a generated Excel template.

Export API
The Export API is used to provide custom export options such as Open in Excel options
that are manually added via the Export API.

In this recipe, we will show how to use the Export API to provide custom export options by
adding an explicit button for Open in Excel experiences. The label shown on the button
should usually be Open target in Excel where the target is the name of the target data, such
as Vendors or catalog. The code behind such a button will be for obtaining the template
to be used. Add the desired filter and pass the template to the user.



Integration with Microsoft Office

[ 337 ]

How to do it...
Carry out the following steps in order to complete this recipe:

Start Visual Studio 2015 by opening the previously created project, or create a1.
new project.
Right-click on the project, and then click Add | New item.2.
Select the Resource item type and set the name to VendorBasicTemplate. Make3.
sure that VendorBasicTemplate.xlsx is closed.
Add a document template for usage in code.4.

Add a new button OpenVendorInExcel on the VendTable form under the path5.
\Forms\VendTable\Design\
ActionPane(ActionPane)\VendorTab(ActionPaneTab)\VendorModify(Bu

ttonGroup)\OpenVendorInExcel(Button).
Add code on the clicked method on the OpenVendorInExcel button:6.

     [Control("Button")]
     class OpenVendorInExcel
     {
       public void clicked()
       {
         super();
         const str templateName = resourceStr(VendorBasicTemplate);
         DocuTemplate template =
           DocuTemplate::findTemplate(OfficeAppApplicationType::Excel,
            templateName);
         // Ensure the template was present
         if (template && template.TemplateID == templateName)
         {
           Map filtersToApply = new Map(Types::String, Types::Class);
           // Create vendors filter
           ExportToExcelFilterTreeBuilder filterBuilder = new
           ExportToExcelFilterTreeBuilder(tablestr(VendVendorEntity));
           anytype filterString =
           filterBuilder.areEqual(fieldstr(VendVendorEntity,
            VendorAccountNumber), VendTable.AccountNum);



Integration with Microsoft Office

[ 338 ]

           filtersToApply.insert(tablestr(VendVendorEntity),
           filterString);

           // generate the workbook using the template and filters
           DocuTemplateRender renderer = new DocuTemplateRender();
           str documentUrl = renderer.renderTemplateToStorage(template,
             filtersToApply);
           // Pass the workbook to the user
           if (documentUrl)
             {
               Browser b = new Browser();
               b.navigate(documentUrl, false, false);
             }
             else
             {
               error(strFmt("@ApplicationFoundation:DocuTemplate
                 GenerationFailed", templateName));
             }
         }
         else
         {
          warning(strFmt("@ApplicationFoundation:DocuTemplateNotFound",
              templateName));
         }
       }
     }

Navigate to Accounts payable | Vendors | All Vendors and find the button7.
Open Vendors in Excel:



Integration with Microsoft Office

[ 339 ]

This button will export the selected record. Here, we have applied filters on the8.
vendor code so it will only export the vendor code 1001 record from all the
companies. To select a record from a particular company, apply filters on
dataAreaId:

How it works...
Here, we first need to add the resource which refers are Excel template. This same template
should be loaded as a document template in Dynamics 365 for Finance and Operations.
Once this is done, we can use the same template to export the data to Excel in our code.

We can add a filter while retrieving data by using ExportToExcelFilterTreeBuilder,
which returns a filter expression of class type. Then, insert these values in Map type and use
the DocuTemplateRender class to render the document from the method
renderTemplateToStorage(), which returns the browser URL. The browser URL can be
passed to the navigate () method of the Browser class.



Integration with Microsoft Office

[ 340 ]

Lookup in Excel - creating a custom lookup
To facilitate data entry, the Excel App provides lookups and data assistance. Date fields
provide a date picker, enumeration (enum) fields provide an enum list, and relationships 
provide a relationship lookup. When relationships exist between entities, a relationship
lookup is shown. We can create custom lookups to show data options when an enum or
relationship isn't sufficient. The main use case is when data must be retrieved from an
external service and presented in real time.

In this recipe, we will show how to add a custom lookup on currency code on a vendor's
entity.

How to do it...
Carry out the following steps in order to complete this recipe:

Open the previously created project in Visual Studio.1.
Open the Designer View for VendVendorEntity. Right-click on Methods and2.
then click on New Method.
Add the lookup_CurrencyCode method from the following code sample:3.

    [SysODataActionAttribute("VendVendorEntityCustomLookup", false),
    //Name in $metadata
    SysODataCollectionAttribute("_fields", Types::String),
    //Types in context
    SysODataFieldLookupAttribute("CurrencyCode")] //Name of field
    public static str lookup_CurrencyCode(Array _fields)
    {
      OfficeAppCustomLookupListResult result =
        new OfficeAppCustomLookupListResult();

      result.items().value(1, "INR");
      result.items().value(2, "USD");
      result.items().value(3, "EUR");
      result.items().value(4, "BLR");
      result.items().value(5, "AED");
      result.items().value(6, "MYR");
      return result.serialize();
    }



Integration with Microsoft Office

[ 341 ]

Open Excel Workbook, and open designer to add fields as follows:4.

Select the Currency Code (Currency as shown in the following screenshot)5.
column have a look at the Add-ins window for lookup values:

How it works...
Here, Dynamics 365 for Finance and Operations Data entity API automatically recognizes
SysODataActionAttribute, SysODataCollectionAttribute, and
SysODataFieldLookupAttribute. Also, we need to add the method name as
lookup_fieldname() so that the system considers it to render the lookup for the field.
Here, in this example, we have provided lookup on CurrencyCode. When we navigate to
the field, the system uses OData API and retrieves the lookup values.



Integration with Microsoft Office

[ 342 ]

Document management
In Dynamics 365 for Finance and Operations, document management supports Azure Blob
and SharePoint online for saving record attachments. Database storage is not supported
anymore.

Azure Blob: Azure Blob storage is the default storage for Dynamics 365 for Finance and
Operations. It is equivalent to storage in a database, as documents can only be accessed
through Dynamics 365 for Finance and Operations. Also, it provides the added benefit of
providing storage that doesn't negatively affect the performance of the database.

SharePoint Online: When you have an O365 license and MS, autodiscover the SharePoint
tenant, for example, a user on the packtPublication.onmicrosoft.com O365/AAD
tenant gets packtPublication.sharepoint.com as the SharePoint site. This whole
architecture allows SharePoint storage to work immediately.

How to do it...
Carry out the following steps to understand document management:

As the very first step, check whether DOCUMENT HANDLING is enabled or1.
not. You can turn on this feature through the Options button in the right top
corner on your screen by following this path:

Options | Preferences/General | Miscellaneous and set the document handling
as active:



Integration with Microsoft Office

[ 343 ]

Once this feature is enabled, you will get the attach button in the upper-right2.
corner, as shown in the following screenshot. To check, open any form (Account
receivable | Customers | All customers):

Now, to add any document, click on the New button. You will have an option to3.
choose from File, Image, Note, and URL document types and the system will ask
you to upload the attachment:



Integration with Microsoft Office

[ 344 ]

Let's try to attach an image file. Select Image from the New dropdown. Select an4.
image file. Once the upload is done, you can check the related information on the
form along with the preview:

On this form, you will see some more fast tabs that contain more details about5.
this attachment.

How it works...
In Dynamics 365 for Finance and Operations, when you select an attachment, it will store it
on your selected storage, while using the Azure storage system will create a Blob and link it
to the current record.

There's more...
You may have found some changes in different updates of Dynamics 365 for Finance and
Operations, as earlier it was Microsoft Dynamics 365 for Operation and still some more
exciting updates are in the queue.

For example, in the preceding recipe, we showed four document types, while in current
versions you may get File and Image only.



Integration with Microsoft Office

[ 345 ]

You can also attach Office document types, such as Microsoft Word, Excel, and PowerPoint
files, but for that you must use a production Office Web Apps Server, which might not be
available in a OneBox configuration.

Once you have an Office365 license, you need to set up SharePoint storage for attachments.
To do that, go to Organization administration | Document management | Document
management parameters and ensure that the SharePoint server has been automatically
discovered and set:

Test this connection and, on successful setup, open or create a Document type, set the
document type's location to SharePoint, and select the folder that the files should be
stored in.



8
Integration with Power BI

In this chapter, we will cover the following recipes:

Configuring Power BI
Consuming data in Excel
Integrating Excel with Power BI
Developing interactive dashboards
Embedding Power BI visuals

Introduction
Power BI is best known as a reporting tool that helps you to create interactive visual
reports. When it comes to Dynamics 365 for Finance and Operations, now it's a cloud-based
analytics visualization platform that helps you to extract, transform, and present business
data from Microsoft Dynamics 365 for Finance and Operations to interactive reports and
dashboards.

This chapter explains the out-of-box integration between Dynamics 365 for Finance and
Operations and PowerBI.com. You will also learn how we can use the features and its
services that are part of Microsoft Power BI to access, explore, and gain insight from your
Microsoft Dynamics 365 for Finance and Operations.

Power BI provides you a self-service analytics solution while working with the Office 365
cloud service and automatically refreshes the Microsoft Dynamics 365 for Finance and
Operations data into your BI dashboards. You can also use Power BI Desktop or Microsoft
Office Excel Power Query for authoring reports and Power BI for sharing dashboards and
refreshing data from Microsoft Dynamics 365 for Finance and Operations, this allows your
organization to use a powerful way to work with Dynamics 365 data.

https://powerbi.microsoft.com/en-us/


Integration with Power BI

[ 347 ]

Configuring Power BI
You can connect to Microsoft Dynamics 365 for Finance and Operations with Power BI
Desktop to create custom Dynamics 365 reports and dashboards for use with the Power BI
service. To enable Power BI the very first thing you have to do is configure your Power BI
with Dynamics 365 for first use.

How to do it...
Follow these steps:

Log in to your Power BI account using https://powerbi.microsoft.com/en-us/.1.

Give details about the application and Dynamics 365 for Finance and Operations2.
environment, you can refer to the following for more clarity:

App Name: Give a generic application name
App Type: Choose Server side web app
Redirect URL: Add oauth at the end of your home page URL
Home page URL: Application URL

https://powerbi.microsoft.com/en-us/


Integration with Power BI

[ 348 ]

Choose APIs to access:3.



Integration with Power BI

[ 349 ]

Register your app.4.

In this step, click on Register App and the system will create client ID and
client secret for your new app. Keep a backup of both values, you need to put
these values in the next step:

Now open Dynamics 365 for operation and navigate to System Administration |5.
Setup | Power BI.



Integration with Power BI

[ 350 ]

Use client ID and Application Key, and add the details here which has been
generated from the last step respectively:



Integration with Power BI

[ 351 ]

Now open any workspace, on the right side you will get a Power BI tile, click on6.
Get started:



Integration with Power BI

[ 352 ]

Now authorize Power BI using admin credentials. Once done with this step you7.
will get power BI tiles on the workspace:



Integration with Power BI

[ 353 ]

Now navigate to System administration| Setup | System parameter, and go to8.
the help tab. You will get a notification for connecting with LCS, select Click here
to connect to LCS:

On successful authentication, you will get selection data in the Help tab.

Fill in the required details here:9.



Integration with Power BI

[ 354 ]

Now navigate to System administrator | Setup | Entity Store and refresh all10.
aggregate measurement. You can set batch jobs as well for this activity:

Now you will get these in your LCS account under Shred Asset library | Power11.
BI reports. You can download the pbxi files to modify the Power BI desktop
application.
Go to System administrator | Setup | Deploy Power BI files and deploy all12.
required BI files from this screen.

How it works...
When you log in to the Power Bi account using your organization credentials you will be
able to access it. Using these steps, you can generate Client Id and application id for
your power BI application. Use these details in Dynamics 365 to create mapping with a
Power BI account.



Integration with Power BI

[ 355 ]

After this initial mapping, you have to do more setup in Dynamics 365, as shown in the
preceding recipe. Once you are done with all these steps you will be able to access Power BI
tiles under each workspace.

There's more...
You can download a default Power BI report using LCS. Log in to your LCS account and
select Shared asset library, under Power BI report Model you will see 14 default BI report
model files:

Click any of them and you can download it on your local drive. Use Power BI desktop to 
modify these reports.

See also
You may need to install Power BI gateway to connect with the application,
download this using the following link:
https://powerbi.microsoft.com/en-us/gateway/

https://powerbi.microsoft.com/en-us/gateway/


Integration with Power BI

[ 356 ]

Consuming data in Excel
In this recipe, we will consume Dynamics 365 data into an Excel file using power view and
power pivot tools. Follow with use of power view report. It's a very useful tool for reports
and visual artifacts. There are many ways to import data into Excel, here in this recipe we
will use the OData feed to get required data and convert it into visual reports.

How to do it...
Open Excel and go to the Data tab. Click on New Query | From other source |1.
From OData feed:



Integration with Power BI

[ 357 ]

In the next screen add your Dynamics 365 API URL, add /data at the end of the2.
URL, and click OK:

It will navigate you to the next screen where we need to select three tables, as3.
shown in the following screenshot:



Integration with Power BI

[ 358 ]

When you click the Load button, all queries will load on your Excel file right
away. You can select every query for an update such as hiding/selecting the
require column.

Now go to Data tab | Data tool group | Manage Data Model. It will open4.
another screen for Power Pivot for Excel. Go to Design Tab | Relationship group
| Manage Relationships, use this form to create/edit appropriate relationships
between tables as follows:

Close the Manage Relationships dialog box.

Now try to add some calculated measures on the report, to do that, use the5.
Measures pane at the bottom of the PowerPivot Window to add two new
measures:

Click on the Measure pane below your grid and enter the following formula, and
then press Enter:

Total Debit:=CALCULATE(SUM([DebitAmount]))



Integration with Power BI

[ 359 ]

Click on another cell below the previous one, as shown in the following
screenshot, and enter the following formula:

Total Credit:=CALCULATE(SUM([CreditAmount]))



Integration with Power BI

[ 360 ]

Now we need to add a report using this query, navigate to Insert | Power View.6.
It will load a blank power view report. You will get your query in this report.
Now drag and drop the total fields that we created in the previous step. Also, you
can update the design using Design | Switch visualization:



Integration with Power BI

[ 361 ]

In case you are looking for a specific view, you can try to drag the fields in the7.
Power View pane in the left window, and drag them into the correct Axis and
Legend areas to get the required visuals:

You can now drill into the vendor group by double-clicking the VendorGroupId8.
column.

How it works...
Using OData end points, it's easy to expose into Excel. To validate that data entities are
exposed by using the OData v4 endpoint, add a suffix of data to the URL. The URL should
now be in the following format:
https://yourenvironment.cloudax.dynamics.com/data

https://yourenvironment.cloudax.dynamics.com/data


Integration with Power BI

[ 362 ]

For Internet Explorer, JSON files need to be downloaded before you can view them. Use
Visual Studio to view the JSON file. If you're using Chrome, you can view the feed in your
browser window itself:

It will show all available queries that are available.

There are a few more add-ins on the market such as Microsoft SQL Server Power Pivot for
Excel, which enables data modeling for business users using an in-memory engine that is
built into Excel. This will allow you to process large amounts of data at the same time
without worrying about performance.

Another add-in is Power View, which lets you build visualizations that are interactive in
Excel itself by using data modeled and loaded by Power Pivot and Power Query.

See also
If you are not getting a Power view option in Excel, follow this link to enable it:
https://support.office.com/en-us/article/Turn-on-Power-View-in-Excel-2
016-for-Windows-f8fc21a6-08fc-407a-8a91-643fa848729a

https://support.office.com/en-us/article/Turn-on-Power-View-in-Excel-2016-for-Windows-f8fc21a6-08fc-407a-8a91-643fa848729a
https://support.office.com/en-us/article/Turn-on-Power-View-in-Excel-2016-for-Windows-f8fc21a6-08fc-407a-8a91-643fa848729a


Integration with Power BI

[ 363 ]

Integrating Excel with Power BI
In this recipe, we will continue from the last recipe and create a dashboard by using this
data model. Use this excel file as a data source to build your Power BI tile.

How to do it...
Log in to http://app.powerbi.com using your organization credentials. For first 1.
time users, you can sign up for a trial version:

Create a new dashboard by clicking on the plus sign (+) next to Dashboards.2.
Enter the name as vendor payment.
Click on GetData and under the Files tile click on select Local File and load your3.
excel file and then import it into Power BI:

http://app.powerbi.com


Integration with Power BI

[ 364 ]

On successful import your dashboard should look like this:4.

Save your setup.



Integration with Power BI

[ 365 ]

Now you will be able to use this Power BI tile in Dynamics 365 for Operation5.
workspaces:

To get this tile live on your WorkSpace you need to use the Power BI section in its
respective workspace.



Integration with Power BI

[ 366 ]

How it works...
Dynamics 365 for operation data source is the most useful data source for Power BI as
Power BI authoring tools, like Excel and Power BI Desktop. You have to connect to data
using an OData feed that uses Power Query and access data entities that can be used to
author Power BI reports and dashboards.

OData V4 authentication is required to expose Dynamics 365 for Finance and Operations
data entities as data feeds. Data entities included here are standard data entities and
aggregate data entities that enable you to summarize and calculate data in the OData feed.
All business users can get access to these feeds based on the security privileges defined in
the system. OData authentication can also be consumed by any other tool that supports the
OData protocol and works with Dynamics 365 for Finance and Operations data securely.

See also
If you are using Microsoft Excel 2013, you must download Power Query using
the following link:
http://www.microsoft.com/en-gb/download/details.aspx?id=39379

Developing interactive dashboards
Microsoft ships pre-built Dynamics 365 for Operation content packs for Power BI, which
includes dashboards and reports. For demonstration purposes we could also load these
content packs from PowerBI.com in our application and analyze the data.

In this recipe, we will show you how to develop a Power BI dashboard for organizational
content packs, to share their data and datasets, reports, and other visual analytical data
within their organization.

http://www.microsoft.com/en-gb/download/details.aspx?id=39379
https://powerbi.microsoft.com/en-us/


Integration with Power BI

[ 367 ]

How to do it...
Get Power BI desktop to connect your Azure SQL database from this link:1.
https://www.microsoft.com/en-us/download/details.aspx?id=45331.

After installation, open Power BI Desktop and select the Get Data option, as2.
shown in the following screenshot:

https://www.microsoft.com/en-us/download/details.aspx?id=45331


Integration with Power BI

[ 368 ]

Here we get various options for our data source. We could choose any of the3.
options here, but for this recipe we will choose SQL Server:

Fill in the details as shown in the preceding screenshot and click OK to connect.4.



Integration with Power BI

[ 369 ]

Select the two tables, InventSum and InventDim, as shown in the screenshot and5.
click Load:

Select the Edit Queries option, as shown in the following screenshot:6.



Integration with Power BI

[ 370 ]

It will open up Query editor, select Home |Combine group | Merge queries
under the combine tab, as shown in the following screenshot.

Under the Merge queries window, select the values as shown in the following7.
screenshot:



Integration with Power BI

[ 371 ]

Here, we need to specify relationships between the two data sources on the8.
InventDimId field and select Join type as Inner join. On the new merged query
Stock profile, select the specific column field as INVENTSITEID:



Integration with Power BI

[ 372 ]

On the Query Editor window, select Close & Apply:9.

Select Aggregate fields such as AVAILPHYSICAL, DEDUCTED, POSTEDQTY,10.
RECEIVED, and PHYSICALINVENT. Select fields INVENTSITEID and
ITEMID in AXIS and turn on drill down mode as shown in the following
screenshot:



Integration with Power BI

[ 373 ]

Publish the report to Power BI using the Publish button on the Share tab. Use a11.
power BI account to publish the report:

Log in to powerbi.com and find the report StockProfile under the Reports tab:12.

https://powerbi.microsoft.com/en-us/


Integration with Power BI

[ 374 ]

How it works...
Here in this recipe, we load the data of InventSum and InventDim by connecting to the
Dynamics 365 for Finance and Operations SQL database. Once the queries for the two tables
are loaded then we merge the queries into one by specifying Inner Join on the InventDim
field.

Here we fetch the InventSiteId field from the InventDim table and provide the latter on the
AXIS of the chart. In addition to this we provide an ItemId field on the AXIS as well under
InventSiteId for drill down on stock of items on site.

Embedding Power BI visuals
Dashboard solutions and reporting can be crafted and viewed on their own in Power BI for
any organization and business unit. Dynamics 365 for operation provides Power BI columns
on some of the workspaces. Just click Get Started and it opens a Power BI tile catalog; these
are the dashboard solutions and reports that are pinned on Power BI.

In this recipe, we will show you how you can pin interactive dashboards developed on
Power BI to a Dynamics 365 for Finance and Operations workspace to provide intuitive
visuals. We could also open PowerBI.com from here by clicking on dashboard for a more
interactive analysis.

How to do it...
Log in to PowerBI.com and create a new dashboard by using a plus (+) sign to add1.
a blank dashboard.

https://powerbi.microsoft.com/en-us/
https://powerbi.microsoft.com/en-us/


Integration with Power BI

[ 375 ]

Access our report Stock profile and select the option Pin visual on the report:2.

Now log in to Dynamics 365 for Finance and Operations and move to Category3.
and product management workspace and connect to Power BI.
Select the tile for Stock profile and press OK to embed it in Dynamics 365 for4.
Finance and Operations:



Integration with Power BI

[ 376 ]

This embeds the screen on our workspcae. Furthermore, for analysis and drill-5.
down purposes we could double-click on the report and open it in PowerBI.com
for more interactive analysis:

How it works...
In the preceding recipe, we have obtained analytical data by querying an SQL database. The
query is used to aggregate and calculate data on InventSum and create a power BI tile. We
are already signed into Dynamics 365 for Finance and Operations using AAD (Azure
Active Directory), so authorization of a connection between Dynamics 365 for Finance and
Operations and Power BI is done already. Power BI tiles and visualizations are loaded,
which we could pin to the workspace of Dynamics 365 for Finance and Operations.

https://powerbi.microsoft.com/en-us/


9
Integration with Services

In this chapter, we will cover the following recipes:

Authenticating a native client app
Creating a custom service
Consuming custom services in JSON
Consuming custom services in SOAP
Consuming OData services
Consuming external web services

Introduction
In a cross-platform environment and large enterprises, there are many scenarios wherein
many external or third-party solutions are used, which might be a web application or an
application inside a domain. They need to integrate data with Dynamics 365 for Finance
and Operations in real time or at specified intervals depending on the nature of the
business, such as currency exchange rates from banks, syncing with POS terminals, and
inbound/outbound integrations with other legacy systems.

Dynamics 365 provides us with ample options that we can use for integrating, such as
custom services that we create to expose X++ business logic through a service interface for
inbound and outbound integrations, OData REST endpoints that encapsulates Dynamics
365 for Finance and Operations business entities and allows us to perform CRUD
operations using OAuth V2.0.

In this chapter, we will learn to use various integration technologies using simple business
solution examples that are required day-to-day.



Integration with Services

[ 378 ]

Authenticating a native client app
Azure Active Directory (AAD) uses OAuth 2.0 to enable you to authorize access to web
applications and web APIs in your Azure AD tenant. This guide is language independent,
and describes how to send and receive HTTP messages without using any of our open-
source libraries.

OData Services, JSON-based custom services, and REST metadata services support
standard OAuth 2.0 authentication.

Getting ready
Although we can create multiple types of apps using ADD, here we will discuss two kinds
of applications that are supported in Microsoft AAD for Dynamics 365 for Operation:

Native client application: This requires a redirect URI, which Azure AD uses to
return token responses. This flow uses a username and password for
authentication and authorization.
Web App/API (Confidential client): A confidential client is an application that
can keep a client password confidential to the world. It uses a client app ID and a
client secret key to prepare client credentials. The authorization server assigns
this client password to the client application.

These details are shown on Microsoft's official website.

Registering an app with ADD will create an application ID for a new application and also
enables it to receive tokens from external systems. Let's see how we can add a new native
app in Azure Active Directory. In this recipe, get the help of the NuGet Package Manager
Console to install the Microsoft.IdentityModel.Clients.ActiveDirectory library.

To get more details on how to install the
Microsoft.IdentityModel.Clients.ActiveDirectory library, visit
https://www.nuget.org/packages/Microsoft.IdentityModel.Clients.A

ctiveDirectory.

https://www.nuget.org/packages/Microsoft.IdentityModel.Clients.ActiveDirectory
https://www.nuget.org/packages/Microsoft.IdentityModel.Clients.ActiveDirectory


Integration with Services

[ 379 ]

How to do it...
Log in to the Azure portal (https://portal.azure.com).1.
If you have multiple AAD tenants, select the one that you want to use to create a2.
new app.
Go to Menu in the left corner of the portal and select Azure active directory |3.
App registration. The following screenshot shows the form to add a new
application:

Click on New application registration, and, in the new form, fill in all the details4.
as in the following table and hit the create button:

Name PacktDataIntegarionApp

Application type Native

Redirect URI https://PacktDataIntegrationApp

https://portal.azure.com


Integration with Services

[ 380 ]

Your form must look as follows:



Integration with Services

[ 381 ]

On completion of this registration, AD assigns your application a unique client5.
identifier, that is, Application ID to your application:

Check the settings and make sure all other properties for this new application are6.
in place before using it. Refer to the following screenshot:



Integration with Services

[ 382 ]

Now let's register this app in Dynamics 365 for Finance and Operations. Navigate7.
to System administration | Setup | Azure Active Directory applications form,
click on the new button and fill in the required details as follows:

Client Id 94fd508d-26f0-4e2c-a476-********

Name PacktDataIntegrationApp

User Id Admin

Your record should look as follows:8.

After this final step, we are now good to use this app in our code.

Now, create a new Visual Studio C# class library project, which we will utilize for9.
getting authentication to access Dynamics 365 for Finance and Operationss ERP.
Later, we will utilize the same to authenticate access to Dynamics 365 for Finance
and Operations by our web service.
Create a new class ClientConfiguration.cs ,where we will specify our10.
configuration using properties. Specify the following namespaces:

        using System;
        using System.Collections.Generic;
        using System.Linq;
        using System.Text;
        using System.Threading.Tasks;

Add the following specified code in our class. Here, we will set the default values11.
of properties:

        public partial class ClientConfiguration
        {
          public static ClientConfiguration Default {get {return



Integration with Services

[ 383 ]

           ClientConfiguration.OneBox;}}
          public static ClientConfiguration OneBox = new
           ClientConfiguration()
          {
            UriString =
             "https://d365devdpkcdfe0b0****1caos.cloudax
              .dynamics.com/",
            ActiveDirectoryResource =
             "https://d365devdpkcdfe0****01caos.cloudax.dynamics.com",
            ActiveDirectoryTenant =
             "https://login.windows.net/myTenant.onmicrosoft.com",
            ActiveDirectoryClientAppId = "81dada10-f7ee-4fe3-a6b2-
             5******",
          };
          public string UriString { get; set; }
          public string ActiveDirectoryResource { get; set; }
          public String ActiveDirectoryTenant { get; set; }
          public String ActiveDirectoryClientAppId { get; set; }
        }

We will create a new class, where we will perform actual operations to get12.
authentication, and name this class as OAuthHelper:

        using Microsoft.IdentityModel.Clients.ActiveDirectory;
        using System;
        using System.Collections.Generic;
        using System.Linq;
        using System.Text;
        using System.Threading.Tasks;

        public class OAuthHelper
        {
          /// <summary>
          /// The header to use for OAuth.
          /// </summary>
          public const string OAuthHeader = "Authorization";
          /// <summary>
          /// retrieves an authentication header from the service.
          /// </summary>
          /// <returns>the authentication header for the Web API call.
              </returns>
          public static string GetAuthenticationHeader(bool
           useWebAppAuthentication = false)
          {
            string aadTenant =
              ClientConfiguration.Default.ActiveDirectoryTenant;
            string aadClientAppId =
              ClientConfiguration.Default.ActiveDirectoryClientAppId;



Integration with Services

[ 384 ]

            string aadResource =
              ClientConfiguration.Default.ActiveDirectoryResource;
            AuthenticationResult authenticationResult;
            var authenticationContext = new
             AuthenticationContext(aadTenant,
              TokenCache.DefaultShared);
            authenticationResult =
              authenticationContext.AcquireTokenAsync(
                aadResource, aadClientAppId,
                new Uri("https://packtIntegrationApp"),
                new PlatformParameters(PromptBehavior.Auto)).Result;
            // Create and get JWT token
            return authenticationResult.CreateAuthorizationHeader();
          }
        }

Now, to test the authentication, we could create a new console application, name13.
it PacktTestAuthentication ,and set it as a start-up project. Add new code in
our Program.cs class:

        using System;
        using System.Collections.Generic;
        using System.Linq;
        using System.Text;
        using System.Threading.Tasks;
        using AuthenticationUtility;

        namespace PacktTestAuthentication
        {
          class Program
          {
            static void Main(string[] args)
            {
              var oauthHeader = OAuthHelper.GetAuthenticationHeader();
              Console.WriteLine(oauthHeader.ToString());
              Console.ReadLine();
            }
          }
        }



Integration with Services

[ 385 ]

Now, click on the Start button in VS and you will be prompted to enter the14.
username and password of the Dynamics 365 for Finance and Operations user:



Integration with Services

[ 386 ]

It will present you with an Authentication header, as shown in the following15.
screenshot:

You need this authentication header while interacting with this app.

How it works...
Azure active directory provides a secure sign in and authorization for its services.
Dynamics 365 for Finance and Operations is also based on a SaaS (Software as a Service)
module, and Azure plays an important role in providing all required prerequires for your
environment.

When you register a new app in AAD, it creates an application ID for it and this can be used
to register in Dynamics 365 and in your code to enable a bridge between Dynamics 365 and
your application. While calling this application in a console app, you get an interface where
you can use your system credentials to get an authentication header.

Here, while registering the app, we are presented with options to select Web Application or
Native Client Application. We will be utilizing this app for authentication in console
applications, so here we are using Native Client Application.



Integration with Services

[ 387 ]

We create a class ClientConfiguration.cs to specify the configuration for accessing
authorization header. We create properties for URI, active directory resource, aadTenant,
and azure active directory client app ID and specify their default values. Next, we create an
authorization helper class OAuthHelper.cs . Here, we first create an object of
authorization context by calling AuthenticationContext(String, TokenCache) that
will return us the context with the address of the authority. Passing
TokenCache.DefaultShared means that the authentication library will automatically
save tokens in default TokenCache whenever we obtain them.

There's more...
If you are using web applications, provide the sign-on URL, which must be the base URL of
your app, where users can sign in, for example, http://localhost:8888.

To acquire a security token from the authority, we use the overloaded method
AcquireTokenAsync , where we pass aadResource, client app ID, and the redirect URI
specified on the native client app:

aadResource: Identifies the target resource that is the recipient of the requested
token
client App Id: Identifies the Azure client app that has the requested token
redirect URI: Identifies the URI address that needs to be returned on response
from the Azure authentication authority
PlatformParameters: Identifies object of additional parameters used for
authorization

Next, we get an object of the authorizationResult class and call its method
CreateAuthorizationHeader, which returns an authorization header.

See also
App sample on GitHub:
https://github.com/Azure-Samples?utf8=%E2%9C%93&query=active-directory

Code sample:
https://docs.microsoft.com/en-gb/azure/active-directory/develop/active
-directory-code-samples

https://github.com/Azure-Samples?utf8=%E2%9C%93&query=active-directory
https://docs.microsoft.com/en-gb/azure/active-directory/develop/active-directory-code-samples
https://docs.microsoft.com/en-gb/azure/active-directory/develop/active-directory-code-samples


Integration with Services

[ 388 ]

Creating a custom service
In Dynamics 365 for Finance and Operations, we still have custom services available to
expose the system's functionality to the external world. Microsoft uses the SysOperation
framework, where data contracts are decorated with standard attributes, and it
automatically serializes and desterilizes data that is shared between two applications. Any
service method can be exposed to the external world by using SysEntryPointAttribute
and then specifying the service operation under Application Explorer | AOT | Services.

In this recipe, we will create a custom service that will be consumed in subsequent recipes
to demonstrate how it could be consumed by the external world.

Getting ready
For this recipe, you should have a little knowledge of data contracts and service methods.

How to do it...
Create a new Dynamics 365 for Finance and Operations project in Visual Studio1.
and name it BuildingCustomService.
In the project, create a new class, which will serve as a data contract for our2.
custom web service. Name this class PacktCustBalanceDataContract. This
class is decorated with the DataContract attribute and the data methods are
decorated with DataMemberAttribute. We will create the following data
methods in our class, which will be exposed to the external world as parameters:

        [
          DataContractAttribute, SysOperationGroupAttribute('Date',
           "@ApplicationPlatform:SingleSpace", '1')
        ]
        class PacktCustBalanceDataContract
        {
          TransDate   transDate;
          CustAccount accountNum;
          DataAreaId dataAreaId;

          /// <summary>
          /// Gets or sets the value of the datacontract parameter
              DateTransactionDate.
          /// </summary>
          /// <param name="_transDate">



Integration with Services

[ 389 ]

          /// The new value of the datacontract parameter
              DateTransactionDate;
          /// </param>
          /// <returns>
          ///  The current value of datacontract parameter
               DateTransactionDate
          /// </returns>
          [DataMemberAttribute('DateTransactionDate'),
           SysOperationLabelAttribute(literalStr("@SYS11284")),
           SysOperationGroupMemberAttribute('Date'),
           SysOperationDisplayOrderAttribute('1')] // today's date
          public TransDate parmTransDate(TransDate _transDate =
            transDate)
          {
            transDate = _transDate;

            return transDate;
          }

          [DataMemberAttribute('Company'),
            SysOperationLabelAttribute(literalStr("@SYS11284")),
            SysOperationGroupMemberAttribute('Company'),
            SysOperationDisplayOrderAttribute('3')] // today's date
          public DataAreaId parmDataAreaId(DataAreaId _dataAreaId =
            dataAreaId)
          {
            dataAreaId = _dataAreaId;

            return dataAreaId;
          }

          /// <summary>
          /// Gets or sets the value of the datacontract parameter
              CustomerAccount.
          /// </summary>
          /// <param name="_accountNum">
          /// The new value of the datacontract parameter
              CustomerAccount;
          /// </param>
          /// <returns>
          ///  The current value of datacontract parameter
               CustomerAccount
          /// </returns>
          [DataMemberAttribute('CustomerAccount'),
           SysOperationLabelAttribute(literalStr("Account number")),
           SysOperationGroupMemberAttribute('Account'),
           SysOperationDisplayOrderAttribute('2')]
          public CustAccount parmCustAccount(CustAccount _accountNum =



Integration with Services

[ 390 ]

            accountNum)
          {
            accountNum = _accountNum;

            return accountNum;
          }
        }

Now, let's create a service method that will accept a data contract as a parameter3.
and returns back the balance of the customer:

        class PacktCustBalanceService
        {
          [AifCollectionType('return', Types::Real,
           extendedTypeStr(Amount))]
          public Amount processData(PacktCustBalanceDataContract
           _custBalanceDataContract)
          {
            QueryRun    queryRun;
            CustTable   custTable;
            Amount      balance;
            System.Exception ex;

            try
            {
              if(_custBalanceDataContract.parmDataAreaId())
              {
                changecompany(
                  _custBalanceDataContract.parmDataAreaId())
                {
                  // create a new queryrun object
                     var query = new Query();
                     var qbds =
                       query.addDataSource(tableNum(CustTable));
                     qbds.addRange(fieldNum(
                       CustTable,AccountNum)).value(
                         _custBalanceDataContract.parmCustAccount());
                     queryRun = new queryRun(query);
                  // loop all results from the query
                     while(queryRun.next())
                     {
                       custTable = queryRun.get(tableNum(custTable));
                       // display the balance
                       balance = custTable.balanceMST();
                     }
                }
              }
            }



Integration with Services

[ 391 ]

            catch (Exception::CLRError)
            {
              ex = ClrInterop::getLastException();
              if (ex != null)
              {
                ex = ex.get_InnerException();
                if (ex != null)
                {
                  error(ex.ToString());
                }
              }
            }
            return balance;
          }

        }

Create a new service object under the services node with the name4.
PacktCustBalanceService and set the following properties on it:

Property Value

Class PacktCustBalanceService

External name PacktCustBalanceService

Namespace http://schemas.packt.com/CustBalance

Right-click on the Service Operations node under our service5.
PacktCustBalanceService , select new service operations and set the
following properties:

Method processData

Name processData

Create a new object under the Service groups node and name it6.
PacktCustBalanceServices. Right-click and select New Service . Set the
following properties on it:

Name Service

Service PacktCustBalanceService



Integration with Services

[ 392 ]

Build the project and, on successful build, our web service is available to the7.
external world.

How it works...
Once the project is built, our web service is deployed on SOAP and JSON endpoints
automatically. Now, the contract class that we created here serves the purpose of passing 
the parameters that are required by our service for processing business logic. The data
member attribute on the method in the contract class tells the system this method needs to
be exposed to the external world as a parameter.

Our service method processData has the return type Amount EDT, but the external world
doesn't know about this type, so we have used the AifCollectionType attribute to return
the type Real.

Consuming custom services in JSON
Custom services are always deployed on two endpoints:

JSON (JavaScript Object Notation) endpoint
SOAP (Simple Object Access Protocol) endpoint

In Dynamics 365 for Finance and Operations, all service groups under AOT | Service
groups are automatically deployed. Therefore, all services that need to be deployed must be
a part of a service group.

JSON endpoint is deployed at
https://<host_uri>/api/Services/<service_group_name>/<service_group_ser

vice_name>/<operation_name>.

In this recipe, we will consume Dynamics 365 for Finance and Operations custom web
service in JSON.



Integration with Services

[ 393 ]

Getting ready
You need to install Newtonsoft.Json NuGet to build this recipe. So, navigate to NuGet
Package Manager Console in Visual Studio and install Newtonsoft.Json. As we have
done in the previous recipe, get the help of NuGet Package Manager Console to install the
Microsoft.IdentityModel.Clients.ActiveDirectory library.

To get more details on how to install the
Microsoft.IdentityModel.Clients.ActiveDirectory library, visit
https:/ /www. nuget. org/ packages/ Newtonsoft. Json/ .

How to do it...
Create a new C# console application in our project and name it1.
PacktJsonApplication. Here, we need to add a reference to
Newtonsoft.Json and our authentication project built in the first recipe.
Create a new class for a data contract, where we need to set the properties:2.

        public class CustBalanceDataContract
        {
          public string Company { get; set; }
          public string CustomerAccount { get; set; }
          public string DateTransactionDate { get; set; }
        }

Create a new class RootObject for our datacontract that we need to serialize in3.
JSON and pass as a parameter when calling the service:

        public class RootObject
        {
          public object CallContext { get; set; }
          public CustBalanceDataContract _custBalanceDataContract {
           get; set; }
        }

https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/
https://www.nuget.org/packages/Newtonsoft.Json/


Integration with Services

[ 394 ]

Now, in our class Program.cs, which by default is added when we create the4.
console application project, add the following namespaces:

        using AuthenticationUtility;
        using Newtonsoft.Json;
        using System;
        using System.IO;
        using System.Net;
        using System.Text;

Add the following code in our class Program.cs, which we will use to call the5.
web service in JSON:

        class Program
        {
          public static string GetCustBalanceOperationPath=
            ClientConfiguration.Default.UriString +
             "api/services/PacktCustBalanceServices
             /Service/processData";

          static void Main(string[] args)
          {
            var custBalance = new CustBalanceDataContract();
            custBalance.CustomerAccount = "DE-001";
            custBalance.Company = "USMF";
            custBalance.DateTransactionDate = "0001-01-01T00:00:00";
            var rootJson = new RootObject();
            rootJson._custBalanceDataContract = custBalance;
            string json = JsonConvert.SerializeObject(rootJson);
            var request =
              HttpWebRequest.Create(GetCustBalanceOperationPath);
            request.Headers[OAuthHelper.OAuthHeader] =
              OAuthHelper.GetAuthenticationHeader();
            request.Method = "POST";
            request.ContentLength = 0;

            System.Text.UTF8Encoding encoding = new
              System.Text.UTF8Encoding();
            Byte[] byteArray = encoding.GetBytes(json);

            request.ContentLength = byteArray.Length;
            request.ContentType = @"application/json";

            using (Stream dataStream = request.GetRequestStream())
            {
              dataStream.Write(byteArray, 0, byteArray.Length);
            }



Integration with Services

[ 395 ]

            long length = 0;
            try
            {
              using (HttpWebResponse response =
                (HttpWebResponse)request.GetResponse())
              {
                using (Stream responseStream =
                  response.GetResponseStream())
                {
                  using (StreamReader streamReader = new
                    StreamReader(responseStream))
                  {
                     string responseString =
                       streamReader.ReadToEnd();

                     Console.WriteLine(responseString);
                  }
                }
                length = response.ContentLength;
              }
            }
            catch (WebException ex)
            {
              //Write code to log the exception here.
            }

            Console.ReadLine();
          }
        }

Let's run our application and check the results. Set the project as a startup project6.
and click the start button on Visual Studio. You will get a prompt to add a
username and password for authentication; after you sign in, you will get the
result shown in the following screenshot:



Integration with Services

[ 396 ]

So, here, we get the balance of customer DE-001 from USMF company.7.

How it works...
Here, we use NewtonSoft.Json to use the JsonConvert class to serialize C# object in
JSON. The more difficult part is to prepare a JSON string that can be understood by D365 to
fetch parameters. We first start by creating an object for CustBalanceDataContract and
set contract parameters such as CustomerAccount, Company, and so on. Finally, we have to
create a root contract that we will serialize and pass a JSON string to our web service. This
contract consists of dataContract and it is called context contract. Here, the
HttpWebRequest.Create method creates an instance of the JSON endpoint URI that we
provide, and then we need to get authentication from azure to access our Dynamics 365 for
Finance and Operations ERP application.

We specify Method=POST on our request to submit data to be processed by the JSON
endpoint. MIME type for JSON is "application/JSON" and default encoding is
UTF8Encoding, which we used to prepare the content and make objects of a request stream
to write encrypted data on the request stream. In the next step, invoke the GetResponse,
which gives us a Webresponse object, which we implicitly convert in the
HttpWebResponse object, and then use it to get a response stream.

This is how we call the web service using JSON. You may note that calling a web service in
JSON has less overheads and provides a significantly faster response than SOAP.

There's more...
Microsoft has introduced a REST (Representational State Transfer) metadata service in
Dynamics 365 for Finance and Operations, which is a read-only service. In terms of OData,
users can make only GET requests, since it is an OData implementation. The main purpose
of this endpoint is to provide metadata information for application elements. The
Application Explorer retrieves the data using this service API.

REST endpoint is hosted at http://[baseURI]/Metadata.

Currently, this endpoint provides metadata for the following elements:



Integration with Services

[ 397 ]

Labels: This gets labels from the system. They have a dual pair key, language, and ID, so
that you can retrieve the value of the label.

Example:

    https://[baseURI]/$metadata/Labels(
      Id='@SVC_ODataLabelFile:Label1',Language='en-us')

Data entities: This returns a JSON-formatted list of all the data entities in the system.

Example:

    https://[baseURI]/$Metadata/DataEntities

These details are shown on Microsoft's official website.

Consuming custom services in SOAP
Dynamics 365 for Finance and Operations also allows us to consume web services on the
SOAP endpoint. The main advantages of using SOAP protocol is its descriptive definition,
which helps us identify the contracts, proxy classes, and service methods.

Usually, the SOAP endpoint is deployed at
https://<host_uri>/soap/Services/<service_group_name>.

In this recipe, we will consume our same custom web service at the SOAP endpoint.

Getting ready
In this recipe, we will get the balance of a customer and verify that it is the same in
Dynamics 365 for Finance and Operations. Our code is inspired by solutions at
https://github.com/Microsoft/Dynamics-AX-

Integration/tree/master/ServiceSamples. So, we will use the Soap Utility solution
provided by Microsoft to get our SOAP endpoint address and binding element. Get the help
of the NuGet Package Manager Console to install the
Microsoft.IdentityModel.Clients.ActiveDirectory library.

https://github.com/Microsoft/Dynamics-AX-Integration/tree/master/ServiceSamples
https://github.com/Microsoft/Dynamics-AX-Integration/tree/master/ServiceSamples


Integration with Services

[ 398 ]

How to do it...
Create a console application and name it PacktSOAPApplication. Add a1.
reference to the project SOAPUtility project and our authentication project.
Add a service reference to our custom web service hosted at the SOAP endpoint2.
https://d365devdpkcdfe0b0*******os.cloudax.dynamics.com/soap/se

rvices/packtCustBalanceServices.
Use the following namespaces in our class to utilize already existing APIs:3.

        using AuthenticationUtility;
        using System;
        using System.ServiceModel;
        using System.ServiceModel.Channels;
        using SoapUtility.CustBalance;

Add the following code in our Program.cs class, which will call Customer4.
balance web services to get the customer balance from Dynamics 365 for Finance
and Operations:

        class Program
        {
          public const string CustBalanceServiceName =
            "packtCustBalanceServices";

          [STAThread]
          static void Main(string[] args)
          {
            var aosUriString = ClientConfiguration.Default.UriString;

            var oauthHeader = OAuthHelper.GetAuthenticationHeader();
            var serviceUriString =
              SoapUtility.SoapHelper.GetSoapServiceUriString(
                CustBalanceServiceName, aosUriString);

            var endpointAddress = new
              System.ServiceModel.EndpointAddress(serviceUriString);
            var binding = SoapUtility.SoapHelper.GetBinding();

            var client = new PacktCustBalanceServiceClient(binding,
             endpointAddress);
            var channel = client.InnerChannel;

            SoapUtility.CustBalance.PacktCustBalanceDataContract
             change;
            change = new



Integration with Services

[ 399 ]

             SoapUtility.CustBalance.PacktCustBalanceDataContract();
            change.CustomerAccount = "DE-001";
            change.Company = "USMF";
            SoapUtility.CustBalance.processData update;
            var callcontext = new
             SoapUtility.CustBalance.CallContext();
            callcontext.Company = "USMF";
            callcontext.Language = "en-us";
            callcontext.PartitionKey = "initial";
            update = new SoapUtility.CustBalance.processData();
            update._custBalanceDataContract = change;
            update.CallContext = callcontext;
            using (OperationContextScope operationContextScope =
             new OperationContextScope(channel))
            {
              HttpRequestMessageProperty requestMessage =
                new HttpRequestMessageProperty();
              requestMessage.Headers[OAuthHelper.OAuthHeader] =
                oauthHeader;
              OperationContext.Current.OutgoingMessageProperties[
                HttpRequestMessageProperty.Name] = requestMessage;
              var result = (
                (SoapUtility.CustBalance.PacktCustBalanceService)
                 channel).processData(update);
                Console.WriteLine("Balance of customer {0} is: {1}",
                 change.CustomerAccount, result.result);
            }
            Console.ReadLine();
          }
        }

Now, to check the output of our code, set our project as a startup project and run5.
the console application by clicking the Start button on the Visual Studio toolbar.
You will get a prompt to enter your username and password to get an6.
authentication header from azure. After successful authentication, a web service
call will be made by passing a contract and proxy to the service method:



Integration with Services

[ 400 ]

This is the output that we get from Dynamics 365 for Finance and Operations7.
web service. Let's verify the output by navigating to USMF |
AccountsReceivables | Customers | AllCustomers. On customer DE-001,press
the Balance button and you will get a screen as follows:

You can see in the Dynamics 365 Customer form, the balance for this customer is
382,761.50.

How it works...
Here, we first add a service reference of the SOAP endpoint. After adding a SOAP
endpoint, you can use Object browser to view the contract and service clients generated. We
utilize SoapUtility here to get a formatted endpoint address and binding to call the web
service client. We get the authentication packet and specify it on the request header of our
web service.



Integration with Services

[ 401 ]

We create an object of data contract to specify the parameters required to execute our
business logic. Also, call context here is required to set company, partition key, user ID, and
language to the web service. We specify the call context and data contract on our web
service method, request a call using the client proxy and get a response from the web
service as a customer balance which we print onscreen.

Consuming OData services
In Dynamics 365 for Finance and Operations, OData is a standard protocol for creating and
consuming data. Odata provides a REST (Representational State Transfer) endpoint, for
CRUD (Create, Read, Update, and delete) operations. To expose data entities on OData
endpoint, we need to mark the IsPublic property of data entity as true in the Application
Object Tree (AOT). Users can use OData to insert and retrieve data using CRUD
functionality.

OData doesn't require a call context values, unlike SOAP, by default; it returns only data 
that belongs to the user's default company. We could specify a cross-company =true query
option to facilitate the user to fetch data from all other companies that they have access to.

Example:

    http://[baseURI]/data/Customers?cross-company=true

Getting ready
In this recipe, we will integrate a Vendor and verify that it is created in Dynamics 365 for
Finance and Operations. Our code is inspired by a solution at
https://github.com/Azure-Samples?utf8=%E2%9C%93&query=active-directory. So, we
will use the ODataUtility solution provided by Microsoft for our OData integration, which
enables you to get Dynamics 365 data entities into your code.

https://github.com/Azure-Samples?utf8=%E2%9C%93&query=active-directory


Integration with Services

[ 402 ]

How to do it...
Create a new Console application project and name it as1.
PacktODataIntegrationApplication:

Add references to your Authentication project, which we created in the earlier2.
recipe and ODataUtility and add the following namespaces:

        using AuthenticationUtility;
        using Microsoft.OData.Client;
        using ODataUtility.Microsoft.Dynamics.DataEntities;
        using System;
        using System.Linq;



Integration with Services

[ 403 ]

In the following code, for the class ODataCreateVendor ,we first get an3.
authentication header and set it on the OData context:

        class ODataCreateVendor
        {
          public static string ODataEntityPath =
            ClientConfiguration.Default.UriString + "data";
        }

Add a method to create a new vendor, with the following code. Here, we are4.
using static values for a new vendor:

        public static void CreateVendor(Resources context)
        {
          string vendorAccountNumber = "Packt00001";
          try
          {
            Vendor vendorEntity = new Vendor();
            DataServiceCollection<Vendor> vendorEntityCollection =
              new DataServiceCollection<Vendor>(context);
            vendorEntityCollection.Add(vendorEntity);
            vendorEntity.VendorAccountNumber = vendorAccountNumber;
            vendorEntity.VendorName = "Packt printers";
            vendorEntity.VendorSearchName = "Packt printers";
            vendorEntity.VendorPartyType = "Organization";
            vendorEntity.AddressCountryRegionId = "IND";
            vendorEntity.CurrencyCode = "INR";
            vendorEntity.VendorGroupId = "10";
            vendorEntity.DataAreaId = "USMF";
            context.SaveChanges(
              SaveChangesOptions.PostOnlySetProperties |
               SaveChangesOptions.BatchWithSingleChangeset);
            Console.WriteLine(string.Format("Vendor {0} - created !",
             vendorAccountNumber));
          }
          catch (DataServiceRequestException e)
          {
            Console.WriteLine(string.Format("Vendor {0} - failed !",
             vendorAccountNumber));
          }
        }
      }



Integration with Services

[ 404 ]

Now, add a main method with the following code, where we set the other5.
required parameter and get the authentication header:

        static void Main(string[] args)
        {
          Uri oDataUri = new Uri(ODataEntityPath, UriKind.Absolute);
          var context = new Resources(oDataUri);

          context.SendingRequest2 += new
           EventHandler<SendingRequest2EventArgs>(
             delegate (object sender, SendingRequest2EventArgs e)
           {
             var authenticationHeader =
               OAuthHelper.GetAuthenticationHeader();
             e.RequestMessage.SetHeader(OAuthHelper.OAuthHeader,
              authenticationHeader);
           });
           CreateVendor(context);
           Console.ReadLine();
        }

Set our project as a startup project and execute the project using the Start button6.
in Visual Studio. You will get a prompt to enter a username and password, which
you need to enter to get authentication. Once authenticated, our OData
application will create the user and show the following screen:

We could verify the vendor created by logging into Dynamics 365 for Finance7.
and Operations USMF company and opening ALL VENDORS:



Integration with Services

[ 405 ]

As you can see, vendor Packt00001 has been added in Dynamics 365
successfully.

How it works...
OData lets you interact with data by using RESTful web services. Adding using
ODataUtility.Microsoft.Dynamics.DataEntities enables you to get access to
Dynamics 365 data entities in C# code. Now, in the createVendor method, assign values to
all respective fields in the data entity. Make sure all related masters, such as
VendorGroupId and vendorPartyType already exist in the Dynamics 365 database.

Finally, in the main method, get an authentication header using:

    var authenticationHeader = OAuthHelper.GetAuthenticationHeader()

And, on successful authentication, call the createVendor method to insert the vendor
record in the respective tables in the Dynamics 365 datasource. Finally, call
Console.ReadLine(); to see the result onscreen.



Integration with Services

[ 406 ]

There's more...
In the preceding recipe, we used static vales for vendor creation. You can convert this into
your business logic and use it for your actual development, where you get vendors data
from an external source and insert it into Dynamics 365 for Finance and Operations.

See also
For more information about OData, see the following web page:
http://www. odata. org/ documentation/ 

Consuming external web services
Dynamics 365 for Finance and Operations supports consuming external web services by
writing a simple wrapper class on the external web service endpoint in Visual Studio and
adding its reference Dynamics 365 for Finance and Operations project.

Getting ready
For this code walkthrough, we will take a free online web service for a currency converter.
You can find the WSDL at http://currencyconverter.kowabunga.net/converter.asmx

How to do it...
Add a new Class Library and name it ExternalWebservices:1.

http://www.odata.org/documentation/
http://www.odata.org/documentation/
http://www.odata.org/documentation/
http://www.odata.org/documentation/
http://www.odata.org/documentation/
http://www.odata.org/documentation/
http://www.odata.org/documentation/
http://www.odata.org/documentation/
http://www.odata.org/documentation/
http://www.odata.org/documentation/
http://www.odata.org/documentation/
http://www.odata.org/documentation/
http://currencyconverter.kowabunga.net/converter.asmx


Integration with Services

[ 407 ]

Add a service reference under the References node of our newly created project.2.
Use the following service
http://currencyconverter.kowabunga.net/converter.asmx.

Give a name CurrencyConverterServices in the namespace.

http://currencyconverter.kowabunga.net/converter.asmx


Integration with Services

[ 408 ]

By clicking on the Go button, the system will fetch and show all the available3.
services and operations in this web service, as follows:

Click on the OK button.

It will add a new node in your project service reference.4.
Check the app.config file. It should look as follows:5.



Integration with Services

[ 409 ]

Now, go to the class1 node and add the following namespace:6.

        using System;
        using System.Collections.Generic;
        using System.Linq;
        using System.Text;
        using System.Threading.Tasks;
        using ExternalWebServices.CurrencyConverterService;
        using System.ServiceModel;

Rename the class name to CurrencyConverter, and replace its main method7.
with a new method getCurrecyRate, as shown in the following code:

        public string getCurrencyRate(String cur1, string cur2)
        {
          BasicHttpBinding    httpBinding = new BasicHttpBinding();
          EndpointAddress endPoint = new EndpointAddress(
            @"http://currencyconverter.kowabunga.net/converter.asmx");

          var soapClient = new ConverterSoapClient(httpBinding,
           endPoint);
          var usdToinr = soapClient.GetConversionRate(



Integration with Services

[ 410 ]

            cur1.ToString(), cur2.ToString(),DateTime.Now);
          return usdToinr.ToString();

        }

Save all your code and build the project.8.

Sometimes, you may face unexpected errors during a build. In such cases,
right-click on the solution and clean the solution. Now, try to rebuild the
complete solution.

Now, our web service is ready to be consumed in Dynamics 365. Add a new9.
Operation Project in your solution. Name it PktExternalWebServiceDAX.
In the Reference node, right-click and add a new reference. You can choose the10.
project and it will add the dll file automatically in the reference node. See the
following screenshot:



Integration with Services

[ 411 ]

Once you click on the OK button, this must be added in the Reference node of11.
the current project.
Now add a runnable class in your Operation Project, name it12.
ConsumeServiceInDAX, and add a namespace of:

        using ExternalWebServices;

Add the following code in the main method:13.

        ExternalWebServices.currencyConverter currencyCoverter =
          new ExternalWebServices.currencyConverter();
        var convRate = str2Num(currencyCoverter.getCurrencyRate("USD",
          "INR"));
        info(strFmt("%1", convRate));

Save all your code and build the solution. Set this project14.
PktExternalWebServiceDAX as a startup project and class
ConsumeServiceInDAX it as a startup Object.
To test the code, run the solution now. You will get your conversion rate in the15.
following screen:

64.38 is the currency conversion rate for USD and INR.



Integration with Services

[ 412 ]

How it works...
Every web service comes with certain services and operations; you can get all these details
along with the web service. The very first thing we added was a service reference to our C#
project that enables us to interact with this web service and use its methods/services in
code. After adding a service endpoint, you can use Object browser to view the contract and
service clients generated.

Next, you have to create a binding and endpoint for this service; without these you may get
the following error while it is running:



Integration with Services

[ 413 ]

C# code doesn't take a string directly; you have to convert all objects into a string using the
ToString() method.

On the other side, in a Dynamics 365 project, once you add a C# project in the Reference
node, you can interact with its class now. Adding a namespace on top of your class will
help to reduce extra lines of code.

Lastly, create an object of C# service; it's the same as creating an object for any other class:

    ExternalWebServices.currencyConverter currencyCoverter =
      new ExternalWebServices.currencyConverter();

And convert the return value, that is, a string into a number to show as output:

    var convRate = str2Num(currencyCoverter.getCurrencyRate("USD",
     "INR"));
    info(strFmt("%1", convRate));

There's more...
Browse this service on an internet browser to check the services, description and all
available operations in this service:
http://currencyconverter.kowabunga.net/converter.asmx

The following are available operations for the preceding service:

Check each of them to get detailed information on a particular operation code reference.

http://currencyconverter.kowabunga.net/converter.asmx


Integration with Services

[ 414 ]

See also
There are lots of free web services over the internet; you can get them free of cost and use
them in your code. Some of them are:

http://www.webservicex.net/new/Home/Index

http://www.visualwebservice.com/

We will not support any website/company/person if they use any web
service in their code. Please do study and take cautions when using any
web services in your production environment.

http://www.webservicex.net/new/Home/Index
http://www.visualwebservice.com/


10
Improving Development

Efficiency and Performance
In this chapter, we will cover the following recipes:

Using Extension
Caching a display method
Calculating code execution time
Enhancing insert, update, and delete operations
Writing efficient SQL statements
Using event handler
Creating a Delegate method

Introduction
We are entering a new era of Dynamics AX as Dynamics 365 for Finance and Operations,
and it is quite common for many small and large Microsoft Dynamics 365 for Finance and
Operations installations/implementations to suffer from performance issues. These issues
can be caused by insufficient infrastructure, incorrect configuration, ineffective code, and
many other reasons.

There are lots of ways to troubleshoot and fix performance issues. Using standard tools or
review logic. This chapter discusses a few simple must-know techniques to write code
properly and improve logic to deal with basic performance issues. It is hard to get a
complete guide to solve performance issues in Dynamics 365 for Finance and Operations.



Improving Development Efficiency and Performance

[ 416 ]

Using extensions
In Dynamics 365 for Finance and Operations, development requirements can be better
achieved using an extension approach on standard application objects. Unlike overlayering
in AX 2012, extensions in Dynamics 365 for Finance and Operations don't overlay the base
model elements. Instead, it compiles them in separate assemblies, which allows us to
customize on standard objects and associated business logic using Event Handler.
Extensions provide minimal overhead when a base package is upgraded.

In this recipe, we will be extending InventJournalTrans and adding new fields in it.

How to do it...
Create a new project in Visual Studio UsingExtensions and select package,1.
which references Application suit package.
In Application explorer, find the table InventJournalTrans and create its2.
extension.
Create a new field, AvailableStock, with the following properties:3.

Property Value

Name AvailableStock

Label Available stock

EDT Qty

Your new field should look as follows:4.



Improving Development Efficiency and Performance

[ 417 ]

Copy its event handler method onModifiedField:5.

Create a new class, PacktInventJournalTransEventhandler, and paste the6.
onModifiedField event handler method in this class. In addition to the default
code, we need to get the ModifyFieldEventArgs arguments to get the field ID
and use switch case. The DataEventHandler specifies the source of the event
and DataEventType is an enum for the type of event supported. Once the event
arguments are received, we get field ID to call our logic based on a switch-case
ladder. Modify the code in this class so that it looks as follows:

    class PacktInventJournalTransEventhandler
    {
      /// <summary>



Improving Development Efficiency and Performance

[ 418 ]

      ///
      /// </summary>
      /// <param name="sender"></param>
      /// <param name="e"></param>
      [DataEventHandler(tableStr(InventJournalTrans),
        DataEventType::ModifiedField)]
      public static void InventJournalTrans_onModifiedField
        (Common sender, DataEventArgs e)
      {
        ModifyFieldEventArgs args = e as ModifyFieldEventArgs;
        InventJournalTrans inventJournalTrans = sender
         as InventJournalTrans;

        switch(args.parmFieldId())
        {
          case fieldNum(InventJournalTrans,ItemId):
          inventJournalTrans.AvailableStock =
            InventOnhand::newItemId(inventJournalTrans.ItemId)
            .availPhysical();
          break;
        }
      }
     }

In Application explorer, find the form InventJournalTrans and create its7.
extension. Expand the data sources, drag field from InventJournalTrans data
source to Grid in the LineView(Tab) page. It should look as follows:



Improving Development Efficiency and Performance

[ 419 ]

Navigate to Inventory Management | Journal entries | Items | Movement and8.
create a movement journal. Go into journal lines and select item. Our code will
fetch the available physical quantity of items and display it in the field:

How it works...
Here, we create a new field in InventJournalTrans.Extension that extends the base
package element in our custom package. We copy the event handler of the method on
ModifiedField and copy it in our custom class, where we modify it according to our
needs. As we know, we have to fetch the stock of an item when it is changed, so we have
put our code on modified events on the items id field. We fetch the stock using the
InventOnHand class method availPhysical() and save it in our field. This way, we have
customized application code without overlayering the base package application objects.
This approach helps in easy upgrades in base application objects such as classes, tables, and
forms. Event handlers on table methods are already provided by the system and they can be
utilized.

Always use proper comments in between code. Don't put any single lines
of code without comments. Always use a prefix for your new method,
new fields, and objects. Normally, we use the initial three letters for this,
such as pkt for PacktPub.



Improving Development Efficiency and Performance

[ 420 ]

Caching a display method
In Dynamics 365 for Finance and Operations, display methods are still used in some 
places to show additional information on forms or reports such as fields, calculations, and
more. Although they are shown as physical fields, their values are a result of the methods to
which they are bound.

The display methods are executed each time the form is redrawn. This means that the
more complex the method is, the longer it will take to display it on the screen. Hence, it is
always recommended to keep the code in the display methods to a minimum.

The performance of the display methods can be improved by caching them. This is when a
display method's return value is retrieved from a database or calculated only once and
subsequent calls are made to the cache.

In this recipe, we will create a new cached display method for the PaymentTerm
description. We will also discuss a few scenarios in order to learn how to properly use
caching.

How to do it...
In the Application explorer, locate the CustGroup table and customize it into1.
your project.
Add a display method with the following code snippet:2.

    /// <summary>
    ///New method added by YourName for req:PacktChapter10
    ///display description for Payment term
    /// </summary>
    display Description pktdisplayPaymTermDescription()
    {
        return (select firstOnly Description from PaymTerm
        where PaymTerm.PaymTermId == this.PaymTermId).Description;
    }

Add the newly created method to the table's Overview group, right beneath the3.
PaymTermId field, so it will update it on form design on the Overview field
group and we don't need to add this field on the form separately.



Improving Development Efficiency and Performance

[ 421 ]

In the Application Object Tree, find the CustGroup form and add it into your4.
project.
Override the init() method of its CustGroup data source with the following5.
code snippet:

    /// <summary>
    /// Added by yourname on May 13 for purose
    /// </summary>
    public void init()
    {
      super();
      this.cacheAddMethod(tableMethodStr(CustGroup,
         pktdisplayPaymTermDescription));
    }

To test the display method, Save and build your solution.6.



Improving Development Efficiency and Performance

[ 422 ]

Navigate to Accounts receivable | Setup | Customers | Customer groups.7.

You will see a newly added display method showing Terms of Payment in the8.
form, as shown in the following screenshot:

How it works...
In this recipe, we created a new display method in the CustGroup table to show the
description of Terms of Payment, which is defined in a Customer group record. In the
method, we use a query to retrieve only the Description field from the PaymTerm table.
Here, we can use the find() method of the PaymTerm table, but that will have decreased
the display method's performance, as it returns the whole PaymTerm record when we only
need a single field. In a scenario such as this, when there are only a few records in the table,
it is not so important; however, in the case of millions of records, the difference in the
performance will be noticeable. This is precisely why we need to cache the display method
that we have covered in this recipe. We also add the method that we created to the
Overview group in the table in order to ensure that it automatically appears on the
Overview screen of the Customer group form.



Improving Development Efficiency and Performance

[ 423 ]

In order to cache the display method, we override the init() method of the CustGroup
data source and call it's cacheAddMethod() method to ensure that the method's return
values are stored in the cache.

The cacheAddMethod() method instructs the system's caching mechanism to load the
method's values into the cache for the records visible on the screen, plus some subsequent
records. It is important that only the display methods that are visible in the Overview tab
are cached. The display methods located in different tabs can show a value from one record
at a time, even though the caching mechanism loads values from multiple records into the
cache.

Speaking about the display method caching, there are other ways to do this. One of the
ways is to place the SysClientCacheDataMethodAttribute attribute at the top of the
display method, as shown in the following code snippet:

    [SysClientCacheDataMethodAttribute]
    display Description displayPaymTermDescription()
    {
       return (select firstOnly Description from PaymTerm
       where PaymTerm.PaymTermId == this.PaymTermId).Description;
    }

In this case, the method will automatically be cached on any form where it is used without
any additional code.

Another way is to change the CacheDataMethod property of the form's control to Yes. This
will have the same effect as using the cacheAddMethod() method or the
SysClientCacheDataMethodAttribute attribute.

There's more...
Display methods can be used in Lookup methods as well. However, you will not be able to
perform any sorting and filtering in this field. Using the following code syntax, you can add
a new field in Lookup using a display method:

 sysTableLookup.addLookupMethod(tableMethodStr(TableName, MethodName));

You can add this in your Lookup method right after all your physical fields.



Improving Development Efficiency and Performance

[ 424 ]

Calculating code execution time
When working on improving existing code, there is always the question of how to measure
results. There are numerous ways to do this, for example, visually assessing improvements,
getting feedback from users, using the code profiler and/or trace parser, and various other
methods.

In this recipe, we will discuss how to measure the code execution time using a very simple
method, just by temporarily adding a few lines of code. In this way, the execution time of
the old code can be compared with that of the new one in order to show whether any
improvements were made.

How to do it...
In the solution, add a new runnable class and write the following code snippet:1.

    class PktGetExecutaiontime
    {
      /// <summary>
      /// Runs the class with the specified arguments.
      /// </summary>
      /// <param name = "_args">The specified arguments.</param>
      public static void main(Args _args)
      {
        int start;
        int end;

        start = WinAPI::getTickCount();
        sleep(1000); // pause for 1000 milliseconds
        end = WinAPI::getTickCount();

        info(strFmt("%1", end - start));

      }
    }

Set this class as a startup object in project and run the solution to see how many2.
milliseconds it takes to execute the code, as shown in the following screenshot:



Improving Development Efficiency and Performance

[ 425 ]

How it works...
In this recipe, the sleep() command simulates our business logic, which measures the
execution time.

The main element is the getTickCount() method of the standard WinAPI class. The
method returns the TickCount property of the .NET environment, which is a 32-bit integer
containing the amount of time, in milliseconds, that has passed since the last time the
computer was started.

We place the first call to the getTickCount() method before the code we want to measure,
and we place the second call right after the code. In this way, we know when the code was
started and when it was completed. The difference between the times is the code execution
time, in milliseconds.

Normally, using such a technique to calculate the code execution time does not provide
useful information, as we cannot exactly tell whether it is right or wrong. It is much more
beneficial to measure the execution time before and after we optimize the code. In this way,
we can clearly see whether any improvements were made.



Improving Development Efficiency and Performance

[ 426 ]

There's more...
The approach described in the previous section can be successfully used to measure long-
running code, such as numerous calculations or complex database queries. However, it may
not be possible to assess code that takes only a few milliseconds to execute.

The improvement in the code may not be noticeable, as it can be greatly affected by the
variances caused by the current system conditions. In such a case, the code in question can
be executed a number of times so that the execution times can be properly compared.

To demonstrate this, we can modify the previously created job as follows:

    class PktGetExecutaiontime
    {
      /// <summary>
      /// Runs the class with the specified arguments.
      /// </summary>
      /// <param name = "_args">The specified arguments.</param>
      public static void main(Args _args)
      {
        int i;
        int64 timeTaken;
        System.DateTime dateTimeNow;
        System.TimeSpan         timeSpan;
        utcdatetime             startDateTimeUTC;

        startDateTimeUTC = DateTimeUtil::utcNow();
        for (i = i; i <= 20; i++)
        {
          sleep(1000); // pause for 1000 milliseconds
        }
        dateTimeNow       =   System.DateTime::get_UtcNow();
        timeSpan          =
          dateTimeNow.Subtract(utcDateTime2SystemDateTime
           (startDateTimeUTC));
        timeTaken         =   timeSpan.get_TotalMilliseconds();

        info(strFmt("%1", timeTaken));
      }
    }



Improving Development Efficiency and Performance

[ 427 ]

Your output must look like the following line:

Now, the execution time will be much longer, as we add a for loop to increase the
execution time and, therefore, it is easier to assess.

Enhancing insert, update, and delete
operations
Dynamics 365 for Finance and Operations is a three-tier architecture and it takes a
significant amount of time for a database call to insert, update, and delete. The system
provides us with some constructs that allow us to insert/update/delete more than one
record into the database in a single trip, which reduces communication between the
application and the database and it increases performance.

In this recipe, we will use these constructs and see how to do so effectively.

How to do it...
Create a custom table PacktCustomerInvoices where we will be inserting1.
records with the following fields:

Field: InvoiceAccount

Property Value

Name InvoiceAccount



Improving Development Efficiency and Performance

[ 428 ]

Label Invoice account

EDT AccountNum

Field: InvoiceId

Property Value

Name InvoiceId

Label Invoice id

EDT DocumentNum

Field: InvoiceAmount

Property Value

Name InvoiceAmount

Label Invoice amount

EDT Amount

Field: InvoiceQty

Property Value

Name InvoiceQty

Label Invoice qty

EDT Qty

Field: CurrencySymbol

Property Value

Name CurrencySymbol

Label Currency

EDT CurrencySymbol



Improving Development Efficiency and Performance

[ 429 ]

After all the preceding fields, your table will look as follows:

Create a new runnable class insertInvoicesRecordInsertList and add the2.
following code:

      class insertInvoicesRecordInsertList
     {
       /// <summary>
       /// Runs the class with the specified arguments.
       /// </summary>
       /// <param name = "_args">The specified arguments.</param>
       public static void main(Args _args)
      {
        CustInvoiceJour         custInvoiceJour;
        PacktCustomerInvoices   customerInvoice;
        int64                   timeTaken;
        System.DateTime         dateTimeNow;
        System.TimeSpan         timeSpan;
        utcdatetime             startDateTimeUTC;
        int                     i;
         // This collection will store the records that must be
         inserted into the database, we provide skipInsertMethod and
         skipDatabaseLog as true and rest parameters as false
         RecordInsertList customerInvoicesToBeInserted = new



Improving Development Efficiency and Performance

[ 430 ]

          RecordInsertList(tableNum(PacktCustomerInvoices), true,
          true, true, false, false,customerInvoice);

         //Initialize  the start date time.
         startDateTimeUTC = DateTimeUtil::utcNow();

        //Select only the required fields from the table
        while select InvoiceAccount,InvoiceId,InvoiceAmount,Qty,
         CurrencyCode from custInvoiceJour
      {
        // Initializing the buffer with invoice records
       customerInvoice.InvoiceAccount=custInvoiceJour.InvoiceAccount;
       customerInvoice.InvoiceI = custInvoiceJour.InvoiceId;
       customerInvoice.InvoiceAmount = custInvoiceJour.InvoiceAmount;
       customerInvoice.InvoiceQt = custInvoiceJour.Qty;
       customerInvoice.CurrencySymbol = custInvoiceJour.CurrencyCode;

       // Instead of inserting the record into the database, we
         will add it to the RecordInsertList array
       customerInvoicesToBeInserted.add(customerInvoice);
       i++;
      }
       // After fulfilling the array with the elements to
       be inserted we are
       // read to execute the insert operation
       customerInvoicesToBeInserted.insertDatabase();
       dateTimeNow       =   System.DateTime::get_UtcNow();
       timeSpan          =
         dateTimeNow.Subtract(utcDateTime2SystemDateTime
          (startDateTimeUTC));
       timeTaken         =   timeSpan.get_TotalMilliseconds();

       info(strFmt('It took %1 miliseconds to insert %2 records with
         a RecordInsertList approach', timeTaken,i));
      }
    }

The Infolog shows us 12490 records inserted in the table in 7141 milliseconds3.
using the RecordInsertList approach:



Improving Development Efficiency and Performance

[ 431 ]

Furthermore, we could enhance performance by using insert_RecordSet. Let's4.
create a new class inserInvoicesInsertRecordSet and add the following
code:

    class insertInvoicesInsertRecordSet
    {
      /// <summary>
      /// Runs the class with the specified arguments.
      /// </summary>
      /// <param name = "_args">The specified arguments.</param>
      public static void main(Args _args)
      {
        CustInvoiceJour         custInvoiceJour;
        PacktCustomerInvoices   customerInvoice;
        int64                   timeTaken;
        System.DateTime         dateTimeNow;
        System.TimeSpan         timeSpan;
        utcdatetime             startDateTimeUTC;
        int64                   i;

        select count(RecId) from custInvoiceJour;
        i = custInvoiceJour.RecId;

        startDateTimeUTC = DateTimeUtil::utcNow();

        insert_recordset
          customerInvoice(InvoiceAccount,InvoiceId,InvoiceAmount,
            InvoiceQty, CurrencySymbol)
          select
        InvoiceAccount,InvoiceId,InvoiceAmount,Qty,CurrencyCode
            from custInvoiceJour;
        dateTimeNow       =   System.DateTime::get_UtcNow();
        timeSpan          =
          dateTimeNow.Subtract(utcDateTime2SystemDateTime
            (startDateTimeUTC));



Improving Development Efficiency and Performance

[ 432 ]

        timeTaken         =   timeSpan.get_TotalMilliseconds();

        info(strFmt('It took %1 miliseconds to insert %2 records
          with a insert_recordset approach', timeTaken,i));
      }
    }

The Infolog shows us 12490 records inserted in the table in 265 milliseconds5.
using the insert_RecordSet approach:

We could also use the query::insert_recordset method for improved6.
performance, which could help us in different scenarios. Let's perform the same
task using this approach. Create a new class
InseriInvoicesQueryInsertRecordSet and add the following code:

    class InsertInvoicesQueryInsertRecordSet
    {
      /// <summary>
      /// Runs the class with the specified arguments.
      /// </summary>
      /// <param name = "_args">The specified arguments.</param>
      public static void main(Args _args)
      {
        Map fieldMapping;
        Query query;
        QueryBuildDataSource    qbdsCustInvoiceJour;
        QueryBuildFieldList     fieldList;
        PacktCustomerInvoices   customerInvoice;
        CustInvoiceJour         custInvoiceJour;
        int64                   timeTaken;
        System.DateTime         dateTimeNow;
        System.TimeSpan         timeSpan;
        utcdatetime             startDateTimeUTC;
        int64                   i;



Improving Development Efficiency and Performance

[ 433 ]

        //Count the records to be inserted for demo purpose

        select count(RecId) from custInvoiceJour;
        i = custInvoiceJour.RecId;

        startDateTimeUTC = DateTimeUtil::utcNow();

        //Prepare the query object
        query = new Query();

        // Prepare the data source for record set operation
        qbdsCustInvoiceJour =
          query.addDataSource(tableNum(CustInvoiceJour));

        //Add field selection list
        fieldList = qbdsCustInvoiceJour.fields();
        fieldList.addField(fieldNum(CustInvoiceJour,
         InvoiceAccount));
        fieldList.addField(fieldNum(CustInvoiceJour, InvoiceId));
        fieldList.addField(fieldNum(CustInvoiceJour,
         InvoiceAmount));
        fieldList.addField(fieldNum(CustInvoiceJour,Qty));
        fieldList.addField(fieldNum(CustInvoiceJour,CurrencyCode));
        fieldList.dynamic(QueryFieldListDynamic::No);

        //Insert the field mapping between target table
         and query data sources
        fieldMapping = new Map(Types::String, Types::Container);
        fieldMapping.insert(fieldStr(PacktCustomerInvoices,
         InvoiceAccount),
         [qbdsCustInvoiceJour.uniqueId(),
         fieldStr(CustInvoiceJour, InvoiceAccount)]);
        fieldMapping.insert(fieldStr(PacktCustomerInvoices,
         InvoiceId),
         [qbdsCustInvoiceJour.uniqueId(), fieldStr(CustInvoiceJour,
         InvoiceId)]);
        fieldMapping.insert(fieldStr(PacktCustomerInvoices,
         InvoiceAmount),
         [qbdsCustInvoiceJour.uniqueId(),
         fieldStr(CustInvoiceJour, InvoiceAmount)]);
        fieldMapping.insert(fieldStr(PacktCustomerInvoices,
         InvoiceQty),
          [qbdsCustInvoiceJour.uniqueId(),
        fieldStr(CustInvoiceJour, Qty)]);
        fieldMapping.insert(fieldStr(PacktCustomerInvoices,
         CurrencySymbol),
         [qbdsCustInvoiceJour.uniqueId(),
        fieldStr(CustInvoiceJour, CurrencyCode)]);



Improving Development Efficiency and Performance

[ 434 ]

        //Perform query insert recordset
        query::insert_recordset(customerInvoice, fieldMapping,
         query);
        //get date time on completion of process
        dateTimeNow       =   System.DateTime::get_UtcNow();

        //get time span by using subtract method of dateTime class
        timeSpan          =
         dateTimeNow.Subtract(utcDateTime2SystemDateTime
          (startDateTimeUTC));
        timeTaken         =   timeSpan.get_TotalMilliseconds();

        info(strFmt('It took %1 miliseconds to insert %2 records
         with
         a query::insert_recordset approach', timeTaken,i));
       }
    }

The Infolog shows us 12490 records inserted in the table in 297 milliseconds7.
using the query::insert_RecordSet approach:

How it works...
The RecordInsertList class acts as an array of the given type and holds the table buffer.
It can insert multiple records in a single database trip. The add() method prepares the stack
of records and the insertDatabase() method packs these records and sends them to the
database in a single trip, where they are unpacked and inserted into the database table
record by record. While creating an instance of RecordInsertList, we could skip certain
system methods, such as insert by passing some parameters.



Improving Development Efficiency and Performance

[ 435 ]

We have also used insert_recordSet/delete_from/update_recordSet, which are
called set based operations, and insert all records in a database in a single call to the
database. However, these operations are converted to record-by-record operations if
insert/update/delete methods are overridden on application tables. To counter this, for
example, to skip the insert method, we could specify
_tableBuffer.skipDataMethods(true).

There's more...
While working on a real-time project, you may need to deal with a number of records to
perform CRUD methods. In such cases, it's a difficult and time consuming process to
process each record individually. Let's look at how to handle such scenarios.

Using delete_from
We might need to delete records from a table specifying some clause in minimum time. This
we could achieve using delete_from. Create a deleteInvoicesDeleteFrom class and
add the following code:

    class deleteInvoicesDeleteFrom
    {
      /// <summary>
      /// Runs the class with the specified arguments.
      /// </summary>
      /// <param name = "_args">The specified arguments.</param>
      public static void main(Args _args)
      {
        PacktCustomerInvoices   customerInvoice;
        int64                   timeTaken;
        System.DateTime         dateTimeNow;
        System.TimeSpan         timeSpan;
        utcdatetime             startDateTimeUTC;
        int64                   i;

        select count(RecId) from customerInvoice;
        i = customerInvoice.RecId;

        startDateTimeUTC = DateTimeUtil::utcNow();

        //deletes all record in one go.
        delete_from customerInvoice;
        dateTimeNow       =   System.DateTime::get_UtcNow();
        timeSpan          =



Improving Development Efficiency and Performance

[ 436 ]

          dateTimeNow.Subtract(utcDateTime2SystemDateTime
           (startDateTimeUTC));
        timeTaken         =   timeSpan.get_TotalMilliseconds();

        info(strFmt('It took %1 miliseconds to delete %2 records with
          a delete_from approach', timeTaken,i));
      }
    }

While running your code, you will get an output notification as follows:

Using update_recordSet for faster updates
Sometimes, we need to update some records in a table, which we might do using loops,
which can be time consuming. Here, to update the records in a single application to
database trip, we can use update_recordSet. Create an
updateInvoicesUpdateRecordSet class and add the following code:

    class updateInvoicesUpdateRecordSet
    {
      /// <summary>
      /// Runs the class with the specified arguments.
      /// </summary>
      /// <param name = "_args">The specified arguments.</param>
      public static void main(Args _args)
      {
        PacktCustomerInvoices   customerInvoice;
        int64               timeTaken;
        System.DateTime     dateTimeNow;
        System.TimeSpan     timeSpan;
        utcdatetime         startDateTimeUTC;
        int64                   i;

        select count(RecId) from customerInvoice



Improving Development Efficiency and Performance

[ 437 ]

            where customerInvoice.InvoiceQty<100;;
        i = customerInvoice.RecId;
        customerInvoice.clear();
        startDateTimeUTC = DateTimeUtil::utcNow();
        ttsbegin;
        //updates all record in one go.
        update_recordset customerInvoice
            setting IsUpdated=1
            where customerInvoice.InvoiceQty<100;
        ttscommit;
        dateTimeNow       =   System.DateTime::get_UtcNow();
        timeSpan          =
          dateTimeNow.Subtract(utcDateTime2SystemDateTime
            (startDateTimeUTC));
        timeTaken         =   timeSpan.get_TotalMilliseconds();

        info(strFmt('It took %1 miliseconds to update %2 records
          with a update_recordset approach', timeTaken,i));
      }
    }

Writing efficient SQL statements
In Dynamics 365 for Finance and Operations, SQL statements can often become
performance bottlenecks. Therefore, it is very important to understand how Visual Studio
handles database queries and to follow all the best practice recommendations in order to
keep your system healthy and efficient.

In this recipe, we will discuss some of the best practices to use when writing database
queries. For demonstration purposes, we will create a sample find method with different
logic and queries and discuss each of them. The method will locate the CustGroup table
record of the given customer account.

How to do it...
As methods are not allowed on extensions, to demonstrate this recipe we need to1.
over layer a CustGroup table. Add a CustGroup table in your project, and create
the following method:

    /// <summary>
    ///
    /// </summary>



Improving Development Efficiency and Performance

[ 438 ]

    /// <param name = "_custAccount"></param>
    /// <param name = "_forupdate"></param>
    /// <returns></returns>
     public static CustGroup PktfindByCustAccount(CustAccount
     _custAccount,
     boolean _forupdate = false)
    {
      CustTable custTable;
      CustGroup custGroup;

      if (_custAccount)
      {
        select firstOnly CustGroup from custTable
        where custTable.AccountNum == _custAccount;
      }
      if (custTable.CustGroup)
      {
        if (_forupdate)
        {
            custGroup.selectForUpdate(_forupdate);
        }

        select firstOnly custGroup where
          custGroup.CustGroup == custTable.CustGroup;
      }
      return custGroup;
    }

In the same table, create another method with the following code snippet:2.

    /// <summary>
    ///
    /// </summary>
    /// <param name = "_custAccount"></param>
    /// <param name = "_forupdate"></param>
    /// <returns></returns>
    public static CustGroup PktfindByCustAccount2(
      CustAccount _custAccount,
      boolean _forupdate = false)
   {
     CustTable custTable;
     CustGroup custGroup;

     if (_custAccount)
     {
       if (_forupdate)
       {
          custGroup.selectForUpdate(_forupdate);



Improving Development Efficiency and Performance

[ 439 ]

       }
       select firstOnly custGroup exists
       join custTable
       where custGroup.CustGroup == custTable.CustGroup
         && custTable.AccountNum == _custAccount;
     }
     return custGroup;
   }

How it works...
In this recipe, we have two different versions of the same method. Both methods are
technically correct, but the second one is more efficient. Let's analyze each of them.

In the first method, we should pay attention to the following points:

Verify that the _custAccount argument is not empty; this will avoid the running
of an unnecessary database query.
Use the firstOnly keyword in the first SQL statement to disable the effect of the
read-ahead caching. If the firstOnly keyword is not present, the statement will
retrieve a block of records, return the first one, and ignore the others. In this case,
even though the customer account is a primary key and there is only one match,
it is always recommended that you use the firstOnly keyword in the find()
methods.
In the same statement, specify the field list--the CustGroup field--we want to
retrieve, instructing the system not to fetch any other fields that we are not
planning to use. In general, this can also be done on the Application Object Tree
query objects by setting the Dynamic property of the Fields node to No in the
query data sources and adding only the required fields manually. This can also
be done in forms by setting the OnlyFetchActive property to Yes in the form's
data sources.
Execute the selectForUpdate() method only if the _forupdate argument is
set. Using the if statement is more efficient than calling the
selectForUpdate() method with false.

The second method already uses all the discussed principles, plus an additional one:

Both the SQL statements are combined into one using an exists join. One of the
benefits is that only a single trip is made to the database. Another benefit is that
no fields are retrieved from the customer table because of the exists join. This
makes the statement even more efficient.



Improving Development Efficiency and Performance

[ 440 ]

There's more...
To understand the preceding code in more depth, let's try to analyze the execution using
one of the earlier recipes code. Carry out the following:

Add a new class in your project and write the following code:

    class PktCustGroupAction
    {
      public static void main(Args args)
      {
        CustGroup       custGroup;
        int64                   timeTaken;
        System.DateTime         dateTimeNow;
        System.TimeSpan         timeSpan;
        utcdatetime             startDateTimeUTC;

        startDateTimeUTC = DateTimeUtil::utcNow();
        CustGroup   = CustGroup::pktFindByCustAccount("10");
        // sleep(1000); // pause for 1000 milliseconds
        dateTimeNow       =   System.DateTime::get_UtcNow();
        timeSpan          =
          dateTimeNow.Subtract(utcDateTime2SystemDateTime
           (startDateTimeUTC));
        timeTaken         =   timeSpan.get_TotalMilliseconds();

        info(strFmt("Method 1 time%1", timeTaken ));

        startDateTimeUTC = DateTimeUtil::utcNow();
        CustGroup   = CustGroup::PktfindByCustAccount2("10");
        // sleep(1000); // pause for 1000 milliseconds
        dateTimeNow       =   System.DateTime::get_UtcNow();
        timeSpan          =
         dateTimeNow.Subtract(utcDateTime2SystemDateTime
          (startDateTimeUTC));
        timeTaken         =   timeSpan.get_TotalMilliseconds();
        info(strFmt("Method 2 time%1", timeTaken));
      }
    }

Now, set your class and project as startup object/project. Save all your code and run the
solution. You will get the following results:



Improving Development Efficiency and Performance

[ 441 ]

Method 1, where we used different if statements to validate some conditions clearly shows
that it took 1203 ms, while Method 2, where we used if statement wisely to optimize the
code and execution time, took 344 ms. This is how you must use efficient code during
development to reduce the time taken and speed up your execution time for better
performance.

See also
There are many APIs that are deprecated in Dynamics 365 for Finance and Operations. You
can have a look at the following link to check all the lists of deprecated APIs in Dynamics
365 for Finance and Operations. Along with others, WINAPI is no longer in use in the
current version of Dynamics 365 for Finance and Operations:

https://docs.microsoft.com/en-us/dynamics365/operations/dev-itpro/migr
ation-upgrade/deprecated-apis

Using event handler
Use of event handler is always recommended, and it is the safest way to modify any
existing functionality in Dynamics 365 for Finance and Operations. However, it may not fit
with every requirement, but always try to use event handler in every possible place. You
can use event handler on Classes, Forms, and Tables. On any method, whether it's on a
Table, Class, or Form, you can write pre or post event handler, while on Tables and Forms
you will also get standard Events under Event nodes such as onInserting, onDeleted,
and so on.

https://docs.microsoft.com/en-us/dynamics365/operations/dev-itpro/migration-upgrade/deprecated-apis
https://docs.microsoft.com/en-us/dynamics365/operations/dev-itpro/migration-upgrade/deprecated-apis


Improving Development Efficiency and Performance

[ 442 ]

To understand this concept better, let's take the example of General Journal. While entering
new lines in Journal, we need to validate that the credit amount must not exceed 1000. To
do this, carry on with the following recipe.

How to do it...
Go to the LedgerJournalTrans table and open it in designer.1.
Right-click on the insert method and select Copy event handler method | Pre-2.
event handler:

Create a new class in your project, give it the name3.
pktLedgerJournalTransEventHandler, and paste event handler code here.
Now get the table buffer and write your logic as follows:4.

    class PktLedgerJOurnalTransEventHandler
    {
      /// <summary>
      /// Pre event handler method on Insert method to put
         validations



Improving Development Efficiency and Performance

[ 443 ]

      /// </summary>
      /// <param name="args"></param>
      [PreHandlerFor(tableStr(LedgerJournalTrans),
         tableMethodStr(LedgerJournalTrans, insert))]
      public static void
      LedgerJournalTrans_Pre_insert(XppPrePostArgs
       args)
      {
        LedgerJournalTrans  ledgerJournalTrans = Args.getThis();
        if(ledgerJournalTrans.AmountCurCredit > 1000 )
        {
          Global::error("Credit amount must be less than 1000");
        }
      }
    }

Now, to test your code, go to General Ledger | Journal Entries | General5.
Journal and create a new journal, click on lines, and create a new line with the
credit amount 1001. On saving, the system should throw the error Credit
Amount must be less than 1000, as shown in the following screenshot:

You can add any logic or validation using Event handler, as per the requirement6.
chosen from pre or post event handler.



Improving Development Efficiency and Performance

[ 444 ]

How it works...
When you copy an event handler method, the system will copy its syntax and you can paste
it in a new method in the event handler class. event handler uses XppPrePostArgs to pass
the arguments and the same will be used to capture the table buffer using the getThis()
method. Once you get the table buffer, you can retrieve any field or method to use in your
logic.

On the basis of your selection criteria, the event handler method will execute. For example,
if you choose post Event handler, it will execute just after that method execution is finished.
Refer to the following code to understand post Event handler:

    [PostHandlerFor(tableStr(CustGroup), tableMethodStr(CustGroup,
       delete))]
    public static void CustGroup_Post_delete(XppPrePostArgs args)
    {
    }
    similarly, if you choose Pre-event handler it will execute just
      before the execution of method.
    [PreHandlerFor(tableStr(CustGroup), tableMethodStr(CustGroup,
     delete))]
    public static void CustGroup_Pre_delete(XppPrePostArgs args)
    {
    }

There's more...
Post event handler is the same, but the only difference is that it will execute after the parent
method. Apart from pre-and post-event handler, Dynamics 365 for Finance and Operations
provides event handling on system events/methods such as onDeleting, OnDelete,
OnInsert, and so on. These event handlers have different syntax than the Pre-Post event
handler, but the concept is the same.

To use these event handlers, simply expand the Events node on Tables and Forms. Classes
don't have Events. Expand the Events node and choose the required event, then right-click
and select Copy Event Handler Method and paste it into your event handler class. You
have to use the following syntax to get the table buffer:

    [DataEventHandler(tableStr(LedgerJournalTrans),
       DataEventType::Inserted)]
    public static void LedgerJournalTrans_onInserted(Common
      sender, DataEventArgs e)
    {
       LedgerJournalTrans  ledgerJournalTrans = sender as



Improving Development Efficiency and Performance

[ 445 ]

        ledgerJournalTrans;
       //Now use this table buffer in your logic
    }

Creating a Delegate method
The Delegate method is also very helpful to minimize overlaying, and you can use the
Delegate method to communicate objects that exist in different packages/models and help
to solve dependencies between models when migrating code. Delegate can be very useful
when you need to use two objects that are not in the same package. Use the delegate
concept by defining a contract between the delegate instance and the delegate handler. We
have a new structure of Dynamic 365 for Operations--you will not be able to use an object
outside of its own package. So, to use delegate in such situations a delegate declaration
must have three things--a Delegate keyword, return type should be void, and it should be
an empty method.

Let's understand it using the following recipe.

Getting ready...
To understand this recipe, let's consider a scenario. We have a requirement where we are
creating an Expense journal through code and to identify such transactions we added a new
field on the LedgerJournalTrans table as PktNoLedgerPost. Now, whenever users post
this journal, it will go to the project journal instead of Ledger accounts.

To skip Ledger posting we need to check for this customized Boolean field and pass a
false value to its parmPostToGeneralLedger method.

How to do it...
Add a ProjPostCostJournal class on your solution, and add a new delegate1.
method with the following syntax:

    /// <summary>
    //New delegate method added by Deepak On May 11, 2017
    /// </summary>
    delegate void pktCheckNoLedger(RefRecId _Recid,
      EventHandlerResult _result)
    {



Improving Development Efficiency and Performance

[ 446 ]

    }
    Now we have to call this method in New method of
    ProjPostCostJournal
     class. Add below code to call delegate method
    Boolean noLedger;
    EventHandlerResult  result = new EventHandlerResult();
    if(ledgerJournalTrans.RecId)
    {
      this.PktCheckNoLedger(ledgerJournalTrans.RecId, result);
      noLedger = result.result();
      this.parmPostToGeneralLedger(noLedger);
    }

Add a new event handler class in your project and add a new method with the2.
following code:

    [SubscribesTo(classStr(ProjPostCostJournal),
     delegateStr(ProjPostCostJournal, pktCheckNoLedger))]
     public static void ProjPostCostJournal_PktCheckNoLedger
       (RefRecId _Recid, EventHandlerResult _result)
     {
        LedgerJournalTrans ledgerJournalTrans =
          LedgerJournalTrans::findRecId(_Recid, false);
        if(ledgerJournalTrans.PktNoLedgerPost)
        {
            _result.result(false);
        }
        else
        {
            _result.result(true);
        }
     }

Now try to post one Expense journal with this scenario and you will see there are3.
no General Journal transactions; all vouchers will post only in Project
transactions.



Improving Development Efficiency and Performance

[ 447 ]

How it works...
Delegate methods serve as a contract between the delegate instance and the delegate
handler, without any code/logic itself. The SubscribesTo keyword in an event handler
method creates a static delegate handler. SubscribesTo requires a class name and delegate
method name.

We created a new delegate method and called this method in between the new method.
When a pointer calls this method, it will call event handler code and we will get the
required buffer.

There's more...
EventHandlerResult is used to get any return value from event handler to use in your
code. However, it's not mandatory and you can create as many parameters as required. So,
try to add more parameters to explore and play with the Delegate method.

See also
Please have a look at the DimensionHierarchyDelegates class and how it works. This
class has many delegate methods and they are invoked from the DimensionFocus form.
Try to debug these two objects to better understand the various uses of delegate methods.



Index

A
Application Object Tree (AOT)  189, 401
automatic lookup
   creating  180, 183
automatic transaction text
   modifying  250, 254
Azure Active Directory (AAD)  378
Azure Blob  342
Azure portal
   URL  379
Azure SQL
   URL, for connecting to Power BI  367
Azure
   references  387

B
Boolean value  244
browse
   building, for folder lookups  213

C
caching
   display method  420
code execution time
   calculating  424
color picker lookup
   creating  219, 222
color selection dialog boxes
   using  219
confidential client  378
CRUD (Create, Read, Update, and delete)  401
currency converter
   reference link  406
custom filter control
   creating  132, 137
custom instant search filter

   creating  138, 141
custom Lookup
   creating  340, 341
custom options
   displaying, in another way  200, 206
   list, displaying  197, 200
custom service
   consuming, in JSON  392
   consuming, in SOAP  397, 401
   creating  388, 392

D
data consistency checks
   enhancing  53, 58
data contract  77
data entities
   about  274, 280, 397
   building, with multiple data sources  283
   document  282
   master  281
   parameters  281
   reference  281
   transaction  282
data management  273
data migration  308
data packages
   about  292, 302
   reference link  302
data
   consuming, in Excel  356
   importing  308, 314
date effectiveness feature
   using  58, 62
Delegate method
   creating  445, 447
delete operation
   enhancing  427



[ 449 ]

   somewhere clause, using  435
dialogs
   creating, RunBase framework used  64, 70
   creating, SysOperation framework used  76, 84
   event, handling  70, 76
direct SQL statement
   executing  47, 51, 53
display method
   caching  420
document handling note
   adding  28, 32
document management  342, 344
dynamic form
   building  87, 92
Dynamics 365
   about  223
   APIs  245

E
EDT (Extended Data Type)  180
electronic payment format
   creating  266, 272
elements  9
Event handler
   using  441
Excel Data Connector app
   configuring  328, 332
   using  328, 332
Excel
   data, consuming  356
   integrating, with Power BI  363, 366
export API  336, 339
export process  303
extensions
   using  416, 419
external web services
   consuming  406

F
folder browsing lookups  213
folder lookup
   browse, building  213
form pattern
   list  117, 120
   selecting  116

form splitter
   adding  93, 96
form
   about  64
   creating  121, 126
   using, to build lookups  187, 192

G
general journal
   creating  230, 235, 238
   posting  238, 240

H
hardcoded options  197

I
image
   adding, to records  170, 172
   displaying, as part of form  173, 174
   stored image, saving as file  175
import process  308
insert operation
   enhancing  427
interactive dashboards
   developing  366, 374

J
JSON (JavaScript Object Notation)
   custom services, consuming  392

L
labels  397
last form values
   storing  101, 105
ledger voucher processing  245
ledger voucher
   creating  245, 250
   posting  245, 250
Lifecycle Services (LCS)  292
Line records  263
lookups
   about  179
   building, based on record description  207, 213
   building, form used  187, 192



[ 450 ]

   creating, dynamically  183, 187

M
macro
   using, in SQL statement  44, 46
Microsoft.IdentityModel.Clients.ActiveDirectory

library
   reference link  378
modal form
   creating  96
model
   creating  9
multiple data sources
   data entity, building  283
multiple forms
   modifying, dynamically  98, 101
multiple records
   processing  164, 167
MVC (Model-View-Controller)  76

N
native client app
   aadResource  387
   authenticating  378, 386
   client App Id  387
   PlatformParameters  387
   redirect URI  387
native client application  378
normal table
   using, as temporary table  32
number sequence handler
   using  128, 131
number sequence
   creating  14, 21

O
OData endpoint
   reference link  361
OData services
   consuming  401, 406
   reference link  406
operations
   reference link  441

P
package
   creating  9
Power BI
   about  346
   configuring  347, 355
   Excel, integrating  363, 366
   reference link  347
   URL  363
   URL, for downloading  355
   visuals, embedding  374, 376
Power Query
   URL, for downloading  366
Power view option
   URL, for enabling  362
primary key
   renaming  22, 28
project journal
   processing  241, 244
project
   creating  9
Purchase Order Header record  257
purchase order
   creating  254, 257
   posting  257, 260

Q
query object
   building  39, 42
   OR operator, using  43

R
records
   coloring  168, 170
   copying  34, 39
   image, adding  170, 172
REST (Representational State Transfer)  401
RunBase framework
   used, for creating dialogs  64, 70

S
Sales Order Header  263
sales order
   creating  261



   posting  264, 265
segmented entry control
   using  224, 226, 229
selected/available list
   building  141, 147, 150
set based operation  435
SharePoint online  342
SOAP (Simple Object Access Protocol)
   about  392
   custom services, consuming  397, 401
Soap Utility  397
splitters  93
SQL statement
   macro, using  44, 46
   writing  437, 441
SysOperation framework
   asynchronous  77
   reliable asynchronous  77
   scheduled batch  77
   synchronous  76
   used, for creating dialogs  76, 84

T
tree control

   using  105, 112
tree lookup
   building  193, 197
troubleshooting  314, 326

U
unique record identification value  207
update operation
   enhancing  427
   update_recordSet, using  436

V
View details link
   adding  112, 115

W
wizard
   creating  151, 155, 163
Workbook Designer
   using  333, 336

X
X++ code  183


	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Processing Data
	Introduction
	Creating a new project, package, and model
	How to do it...
	There's more...

	Creating a new number sequence
	How to do it...
	How it works...
	See also

	Renaming the primary key
	How to do it...
	How it works...

	Adding a document handling note
	Getting ready
	How to do it...
	How it works...

	Using a normal table as a temporary table
	How to do it...
	How it works...

	Copying a record
	How to do it...
	How it works...
	There's more...

	Building a query object
	How to do it...
	How it works...
	There's more...
	Using the OR operator

	See also

	Using a macro in a SQL statement
	How to do it...
	How it works...

	Executing a direct SQL statement
	How to do it...
	How it works...
	There's more...

	Enhancing the data consistency checks
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using the date effectiveness feature
	How to do it...
	How it works...


	Chapter 2: Working with Forms
	Introduction
	Creating dialogs using the RunBase framework
	How to do it...
	How it works...

	Handling the dialog event
	How to do it...
	How it works...
	See also

	Creating dialogs using the SysOperation framework
	Getting ready
	How to do it...

	Building a dynamic form
	How to do it...
	How it works...

	Adding a form splitter
	How to do it...
	How it works...

	Creating a modal form
	How to do it...
	How it works...
	There's more...
	See also

	Modifying multiple forms dynamically
	How to do it...
	How it works...

	Storing the last form values
	How to do it...
	How it works...

	Using a tree control
	How to do it...
	How it works...
	See also

	Adding the View details link
	How to do it...
	How it works...

	Selecting a form pattern
	How to do it

	Full list of form patterns
	How to do it...

	Creating a new form
	Getting ready
	How to do it...
	How it works...


	Chapter 3: Working with Data in Forms
	Introduction
	Using a number sequence handler
	How to do it...
	How it works...
	See also

	Creating a custom filter control
	How to do it...
	How it works...
	See also

	Creating a custom instant search filter
	How to do it...
	How it works...
	See also

	Building a selected/available list
	How to do it...
	How it works...
	There's more...

	Creating a wizard
	How to do it...
	How it works...

	Processing multiple records
	How to do it...
	How it works...

	Coloring records
	Getting ready
	How to do it...
	How it works...
	See also

	Adding an image to records
	How to do it...
	How it works...
	There's more...
	Displaying an image as part of a form
	Saving a stored image as a file



	Chapter 4: Building Lookups
	Introduction
	Creating an automatic lookup
	How to do it...
	How it works...
	There's more...

	Creating a lookup dynamically
	How to do it...
	How it works...
	There's more...

	Using a form to build a lookup
	How to do it...
	How it works...
	See also

	Building a tree lookup
	How to do it...
	How it works...
	See also

	Displaying a list of custom options
	How to do it...
	How it works...
	There's more...

	Displaying custom options in another way
	How to do it...
	How it works...
	There's more...

	Building a lookup based on the record description
	How to do it...
	How it works...
	There's more...

	Building the browse for folder lookup
	How to do it...
	How it works...
	There's more...

	Creating a color picker lookup
	How to do it...
	How it works...


	Chapter 5: Processing Business Tasks
	Introduction
	Using a segmented entry control
	How to do it...
	How it works...
	There's more...
	See also

	Creating a general journal
	How to do it...
	How it works...
	There's more
	See also

	Posting a general journal
	How to do it...
	How it works...
	See also

	Processing a project journal
	How to do it...
	How it works...
	There's more...

	Creating and posting a ledger voucher
	How to do it...
	How it works...
	See also

	Changing an automatic transaction text
	Getting ready
	How to do it...
	How it works...
	There's more...

	Creating a purchase order
	How to do it...
	How it works...
	There's more...

	Posting a purchase order
	How to do it...
	How it works...
	There's more...

	Creating a sales order
	How to do it...
	How it works...
	There's more...

	Posting a sales order
	How to do it...
	How it works...
	There's more...

	Creating an electronic payment format
	How to do it...
	How it works...


	Chapter 6: Data Management
	Introduction
	Data entities
	Getting ready
	How to do it...
	How it works...
	There's more...

	Building a data entity with multiple data sources
	How to do it...
	How it works...
	There's more...

	Data packages
	Getting ready...
	How to do it...
	There's more...
	See also

	Data migration
	Getting ready
	How to do it...
	How it works...

	Importing data
	How to do it...
	How it works...

	Troubleshooting
	Getting ready
	How to do it...
	How it works...
	There's more...


	Chapter 7: Integration with Microsoft Office
	Introduction
	Configuring and using the Excel Data Connector add-in
	How to do it...
	How it works...

	Using Workbook Designer
	How to do it...
	How it works...

	Export API
	How to do it...
	How it works...

	Lookup in Excel - creating a custom lookup
	How to do it...
	How it works...

	Document management
	How to do it...
	How it works...
	There's more...


	Chapter 8: Integration with Power BI
	Introduction
	Configuring Power BI
	How to do it...
	How it works...
	There's more...
	See also

	Consuming data in Excel
	How to do it...
	How it works...
	See also

	Integrating Excel with Power BI
	How to do it...
	How it works...
	See also

	Developing interactive dashboards
	How to do it...
	How it works...

	Embedding Power BI visuals
	How to do it...
	How it works...


	Chapter 9: Integration with Services
	Introduction
	Authenticating a native client app
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a custom service
	Getting ready
	How to do it...
	How it works...

	Consuming custom services in JSON
	Getting ready
	How to do it...
	How it works...
	There's more...

	Consuming custom services in SOAP
	Getting ready
	How to do it...
	How it works...

	Consuming OData services
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Consuming external web services
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also


	Chapter 10: Improving Development Efficiency and Performance
	Introduction
	Using extensions
	How to do it...
	How it works...

	Caching a display method
	How to do it...
	How it works...
	There's more...

	Calculating code execution time
	How to do it...
	How it works...
	There's more...

	Enhancing insert, update, and delete operations
	How to do it...
	How it works...
	There's more...
	Using delete_from
	Using update_recordSet for faster updates


	Writing efficient SQL statements
	How to do it...
	How it works...
	There's more...
	See also

	Using event handler
	How to do it...
	How it works...
	There's more...

	Creating a Delegate method
	Getting ready...
	How to do it...
	How it works...
	There's more...
	See also


	Index



